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Overview

• Information propagation/aggregation in networks

– Engineered versus social networks

– Bayesian versus naive updates

• Review a few key models and results

• Is this applied probability?

Theoretical AP Applied AP
random graphs ad. campaigns, etc.

Narrative AP Recreational AP
“explain” social phenomena play with toy models
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Social sciences

• Merging of “expert” opinions

• Evolution of public opinion

• Reputation systems

• Modeling of jurors

• Language evolution

• Charles Mackay (London, 1841):
Extraordinary Popular Delusions
and the Madness of Crowds

– “Men, it has been well said,
think in herds; it will be seen
that they go mad in herds,. . .”
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Myopia and Herding

Wisdom or Madness of Crowds?

The Wisdom of Crowds

Wisdom versus Herding

of Rational but Selfish Agents

Consensus and Averaging

12



Sensor and other Engineered Networks

• Fusion of available information

– we get to design the nodes’ behavior

12



The Basic Setup

• Each node i endowed with private information Xi

– Nodes form opinions, make decisions

– Nodes observe opinions/decisions or receive messages

– Nodes update opinions/decisions

– Everyone wants a “good”decision; common objective

• Questions

– Convergence? To what? How fast? Quality of limit?

– Does the underlying graph matter? (Tree, acyclic, random,. . .)

• Variations

– Hypothesis testing (binary decisions): P(H0 | Xi)

– Parameter estimation: E[Y | Xi]

– Optimization: minu E[c(u, Y ) | Xi]
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• Social science: postulate update mechanism

• Engineering: design/optimize update mechanism

14



The Basic Setup

• Each node i endowed with private information Xi

– Nodes form opinions, make decisions

– Nodes observe opinions/decisions or receive messages

– Nodes update opinions/decisions

– Everyone wants a “good”decision; common objective

• Questions

– Convergence? To what? How fast? Quality of limit?

– Does the underlying graph matter? (Tree, acyclic, random,. . .)

• Variations

– Hypothesis testing (binary decisions): P(H0 | Xi)

– Parameter estimation: E[Y | Xi]

– Optimization: minu E[c(u, Y ) | Xi]

13

The Basic Setup

• Each node i endowed with private information Xi

– Nodes form opinions, make decisions

– Nodes observe opinions/decisions or receive messages

– Nodes update opinions/decisions

– Everyone wants a “good”decision; common objective

• Questions

– Convergence? To what? How fast? Quality of limit?

– Does the underlying graph matter? (Tree, acyclic, random,. . .)

• Variations

– Hypothesis testing (binary decisions): P(H0 | Xi)

– Parameter estimation: E[Y | Xi]

– Optimization: minu E[c(u, Y ) | Xi]

13

• Social science: postulate update mechanism

• Engineering: design/optimize update mechanism

14



Myopia and Herding

Wisdom or Madness of Crowds?

The Wisdom of Crowds

Wisdom versus Herding

of Rational but Selfish Agents

Consensus and Averaging

Bayesian Models
15



Choosing the Best Tavern

• Private info points to the better one,
with some probability of error

• Information is there, but is not used
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Tandem networks
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Tandem networks

Let πj > 0 be the prior probability of hypothesis Hj and Pt(n) = π0P0(Yn,n = 1)+π1P1(Yn,n =

0) be the probability of error at sensor n. The goal of a system designer is to design a strategy

so that the probability of error Pt(n) is minimized. Let P ∗
t (n) = inf Pt(n), where the infimum is

taken over all possible strategies.

1 2 n

X1 X2 Xn

Figure 1: A tandem network.

The problem of finding optimal strategies has been studied in [1–3], while the asymptotic

performance of a long tandem network (i.e., n → ∞) is considered in [2, 4–8] (some of these

works do not restrict the message sent by each sensor to be binary). In the case of binary

communications, [4, 8] find necessary and sufficient conditions under which the error probability

goes to zero in the limit of large n. To be specific, the error probability stays bounded away

from zero iff there exists a B < ∞ such that | log dP1

dP0
| ≤ B. In the case when the log-likelihood

ratio is unbounded, numerical examples have indicated that the error probability goes to zero

much slower than an exponential rate. In a parallel configuration, in which all sensors send their

messages directly to a single fusion center (i.e., γi is now a function of only Xi), the rate of decay

of the error probability is known to be exponential [9]. This suggests that a tandem configuration

performs worse than a parallel configuration, when n is large. It has been conjectured in [2,8,10,11]

that indeed, the rate of decay of the error probability is sub-exponential. However, no rigorous

proof is known for this result. The goal of this paper is to prove this conjecture.

We first note that there is a caveat to the sub-exponential decay conjecture: the probability

measures P0 and P1 are assumed to be equivalent measures, i.e., they are absolutely continuous

w.r.t. each other. Indeed, if there exists a measurable set A such that P0(A) > 0 and P1(A) = 0,

then an exponential decay rate can be achieved as follows: each sensor always declares 1 till the

2

• Estimation with limited memory
(Cover, 1969; Hellman & Cover, 1970; Koplowitz, 1975)

• en = optimal P(Yn is incorrect)

• en → 0? How fast?
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• en = min P(Yn is incorrect)

• Private info: likelihood ratio Li =
P1(Xi)

P0(Xi)

• Two regimes:

• 0 < a ≤ Li < b <∞
Engineered en #→ 0 =⇒ Myopic en #→ 0

• Li ranges over (0,∞)
Myopic en → 0 =⇒ Engineered en #→ 0 en → 0
(but slowly)

Tandem networks

• Xi are i.i.d.; H0 : Xi ∼ P0, H1 : Xi ∼ P1

• binary message/decision functions γi: Yi = γi(Xi, Yi−1)

• “Social network” view: each γi is myopic–Bayes optimal

• “Engineered system view”: {γi} designed for best end-decision

– simple sensor network

– estimation with limited memory [Cover, 1969]
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0) be the probability of error at sensor n. The goal of a system designer is to design a strategy

so that the probability of error Pt(n) is minimized. Let P ∗
t (n) = inf Pt(n), where the infimum is

taken over all possible strategies.
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The problem of finding optimal strategies has been studied in [1–3], while the asymptotic

performance of a long tandem network (i.e., n → ∞) is considered in [2, 4–8] (some of these

works do not restrict the message sent by each sensor to be binary). In the case of binary

communications, [4, 8] find necessary and sufficient conditions under which the error probability

goes to zero in the limit of large n. To be specific, the error probability stays bounded away

from zero iff there exists a B < ∞ such that | log dP1

dP0
| ≤ B. In the case when the log-likelihood

ratio is unbounded, numerical examples have indicated that the error probability goes to zero

much slower than an exponential rate. In a parallel configuration, in which all sensors send their

messages directly to a single fusion center (i.e., γi is now a function of only Xi), the rate of decay

of the error probability is known to be exponential [9]. This suggests that a tandem configuration

performs worse than a parallel configuration, when n is large. It has been conjectured in [2,8,10,11]

that indeed, the rate of decay of the error probability is sub-exponential. However, no rigorous

proof is known for this result. The goal of this paper is to prove this conjecture.

We first note that there is a caveat to the sub-exponential decay conjecture: the probability

measures P0 and P1 are assumed to be equivalent measures, i.e., they are absolutely continuous
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Tandem Network Results

• en = P(Yn is incorrect)

• Private info: likelihood ratio Li =
P1(Xi)

P0(Xi)

Two regimes:

• range of Li: [a, b] 0 < a < b <∞
Engineered en "→ 0 =⇒ Myopic en "→ 0
(Cover, 1969)

• range of Li: (0,∞)
Myopic en → 0 =⇒ Engineered en → 0
(Papastavrou & Athans, 1992) (Cover, 1969)

(but slowly) (Tay, JNT & Win, 2008)

The Two Regimes

Social Engineered

U-LR: en → 0 =⇒ en → 0
(Papastavrou (Cover, 69)

& Athans, 92) but slowly
(Tay, Win & JNT, 08)

B-LR: en #→ 0 ⇐= en #→ 0
(Koplowitz, 75)

B-LR, en #→ 0 en → 0
ternary (Dia & JNT, 09) (Koplowitz, 75)

messages
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Another example

vmv2v1

f

2 2 2

• Leaves make Bernoulli observations Xi

• Easy to verify that λ∗tree,NP < λ∗star,NP.

• Maybe low branching factor near the leaves is the culprit
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A Simple Tree

f

v1 v2

m m

• Each subtree: optimal NP test
for: P0(false alarm) = α/2

• P1(missed detection) ∼ e
−mλ∗star,NP

• Fusion rule:
declare H1 iff [Yv1 = 1 or Yv2 = 1]
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A Perspective on Bayesian Optimality

• Engineering

– Optimal rules are hard to find

– Can design “good” schemes (asymptotic, etc.)

• Social Networks

– Is Bayesian updating plausible?

• More realistic settings?

– Correlated private information

– Multiple hypotheses

– Complex topologies or interaction sequences

26



“Naive” Information Aggregation
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The Setting

• n agents

– starting values xi(0)

• reach consensus on some x∗, with either:

– mini xi(0) ≤ x∗ ≤ maxi xi(0) (consensus)

– x∗ =
x1(0) + · · · + xn(0)

n
(averaging)

– averaging when xi ∈ {−1,+1} (voting)

• interested in:

– genuinely distributed algorithm

– no synchronization

– no “infrastructure” such as spanning trees

• simple updates, such as: xi :=
xi + xj

2
29
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Social sciences

• Merging of “expert” opinions

• Evolution of public opinion

• Evolution of reputation

• Modeling of jurors

• Language evolution

• Preference for “simple” models

– behavior described by “rules of thumb”

– less complex than Bayesian updating

• interested in modeling, analysis (descriptive theory)

– . . . and narratives
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Engineering
• Distributed computation and sensor networks

– Fusion of individual estimates
– Distributed Kalman filtering
– Distributed optimization
– Distributed reinforcement learning

• Networking
– Load balancing and resource allocation
– Clock synchronization
– Reputation management in ad hoc networks
– Network monitoring

• Multiagent coordination and control
– Coverage control
– Monitoring
– Creating virtual coordinates for geographic routing
– Decentralized task assignment
– Flocking

30



Distributed optimization

min
x

n∑

i=1
fi(x)

• centralized gradient iteration: x := x− γ
n∑

i=1
∇fi(x)

• distributed gradient algorithm: xi := xi − γ∇fi(xi)

• reconciling distributed updates: xi :=
xi + xj

2

converges (when stepsize γ is small enough)
under minimal assumptions

– time-varying interconnection topology

min
x

f(x)

• centralized x := x− γ∇f(x) + noise

• distributed xi := x− γ∇f(x) + noisei

• reconcile xi :=
xi + 2xj

3

• consensus algorithm suffices

averaging algorithm needed
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Distributed optimization

minimize
n∑

i=1
fi(x)

• agent i: update xi in direction of improvement of fi

reconcile updates through a consensus or averaging algorithm
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xi(t + 1) =
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t− dij(t)
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aij(t): nonzero whenever i receives message from j

dij(t): delay of that message
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The DeGroot opinion pooling model (1974)

xi(t + 1) =
∑

j

aij xj(t) aij ≥ 0,
∑

j aij = 1

x(t + 1) = Ax(t) A: stochastic matrix

• Markov chain theory + “mixing conditions”

−→ convergence of At, to matrix with equal rows

−→ convergence of xi to
∑

j πjxj

−→ convergence rate estimates

•

• x(t + 1) = A(t)x(t):
mixing conditions for nonstationary Markov chains
(Chatterjee and Seneta, 1977)

Θ(n2) for line graphs
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Averaging algorithms

• Averaging algorithms

– A doubly stochastic: 1′ A x = 1′ x, where 1′ = [1 1 . . . 1]

– x1 + · · · + xn is conserved

– convergence to x∗ =
x1(0) + · · · + xn(0)

n
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A critique

• Social Networks

– “The process that it describes is intuitively appealing.”
(DeGroot, 74)

– How plausible is this type of synchronism?

• Engineering

– If the graph is indeed fixed:
elect a leader, form a spanning tree, accumulate on tree

– Want simplicity, and robustness w.r.t. changing topologies,
failures, etc.

– Different models and specs?

45
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Time-Varying/Chaotic Environments
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Variants

xi(t + 1) =
∑

j

aij xj(t) aij ≥ 0,
∑

j aij = 1

x(t + 1) = Ax(t) A: stochastic matrix

• Fixed matrix A, subject to given graph/zero patterns
optimize A via SDP (Boyd & Xiao, 2003)

• i.i.d. random graphs: same (in expectation) as fixed graphs;
convergence rate ←→ “mixing times” (Boyd et al., 2005)

• Fairly arbitrary sequence of graphs/matrices A(t):
worst-case analysis

• “equal-neighbor model”: xi := average of messages and own value

• bidirectional model: ∀ t: i→ j iff i← j

• doubly stochastic A(t): sum & average preserving



Consensus convergence

xi(t + 1) =
∑

j

aij(t)xj

(
t)

• aii(t) > 0; aij(t) > 0 =⇒ aij(t) ≥ α > 0

• “strong connectivity in bounded time”:
over B time steps “communication graph”
is strongly connected

• Convergence to consensus:
∀ i : xi(t)→ x∗ =convex combination of initial values
(JNT, Bertsekas, Athans, 86; Jadbabaie et al., 03)

• “convergence time”: exponential in n and B

– even with:
symmetric graph at each time
equal weight to each neighbor
(Cao, Spielman, Morse, 05)
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Averaging in Time-Varying Setting

• x(t + 1) = A(t)x(t)

– A(t) doubly stochastic, for all t,

– nonzero aij(t) ≥ α > 0

– O(n2/α)

• Improved convergence rate

– exchange “load” with up to two neighbors at a time

– can use α = O(1)

– convergence time: O(n2)

• Is there a Ω(n2) bound to be discovered?

52

≥ 1/n1.5

Averaging algorithms – analysis

• Suppose initially
∑

i xi(0) = 0,
∑

i x2
i = 1

some node has |xi| ≥ 1/
√

n some node has opposite sign

total gap at least 1/
√

n some gap at least 1/n1.5

• Over B steps, communicate across gap: V improves by ∼ α/n3

– Convergence time: O(n3/α) α ∼ 1/degree −→ O(n4)
– Account for simultaneous contributions of all gaps: O(n2/α)
– Keep degree bounded −→ 1/α bounded

• Averaging in time-varying bidirectional graphs:
no harder than consensus on fixed graphs

• Various convergence proofs of optimization algs. remain valid
– Improves the convergence time estimate for subgradient

methods [Nedic, Olshevsky, Ozdaglar, JNT, 09]



Averaging in Time-Varying Setting

• x(t + 1) = A(t)x(t)

– A(t) doubly stochastic, for all t,

– nonzero aij(t) ≥ α > 0

– O(n2/α)

• Improved convergence rate

– exchange “load” with up to two neighbors at a time

– can use α = O(1)

– convergence time: O(n2)

• Is there a Ω(n2) bound to be discovered?

52

Averaging in Time-Varying Setting

• x(t + 1) = A(t)x(t)

– A(t) doubly stochastic, for all t,

– nonzero aij(t) ≥ α > 0

– O(n2/α)

• Improved convergence rate

– exchange “load” with up to two neighbors at a time

– can use α = O(1)

– convergence time: O(n2)

• Is there a Ω(n2) bound to be discovered?

52

≥ 1/n1.5

Averaging algorithms – analysis

• Suppose initially
∑

i xi(0) = 0,
∑

i x2
i = 1

some node has |xi| ≥ 1/
√

n some node has opposite sign

total gap at least 1/
√

n some gap at least 1/n1.5

• Over B steps, communicate across gap: V improves by ∼ α/n3

– Convergence time: O(n3/α) α ∼ 1/degree −→ O(n4)
– Account for simultaneous contributions of all gaps: O(n2/α)
– Keep degree bounded −→ 1/α bounded

• Averaging in time-varying bidirectional graphs:
no harder than consensus on fixed graphs

• Various convergence proofs of optimization algs. remain valid
– Improves the convergence time estimate for subgradient

methods [Nedic, Olshevsky, Ozdaglar, JNT, 09]



Averaging in Time-Varying Setting

• x(t + 1) = A(t)x(t)

– A(t) doubly stochastic, for all t,

– nonzero aij(t) ≥ α > 0

– O(n2/α)

• Improved convergence rate

– exchange “load” with up to two neighbors at a time

– can use α = O(1)

– convergence time: O(n2)

• Is there a Ω(n2) bound to be discovered?

52

Averaging in Time-Varying Setting

• x(t + 1) = A(t)x(t)

– A(t) doubly stochastic, for all t,

– nonzero aij(t) ≥ α > 0

– O(n2/α)

• Improved convergence rate

– exchange “load” with up to two neighbors at a time

– can use α = O(1)

– convergence time: O(n2)

• Is there a Ω(n2) bound to be discovered?

52

≥ 1/n1.5

Averaging algorithms – analysis

• Suppose initially
∑

i xi(0) = 0,
∑

i x2
i = 1

some node has |xi| ≥ 1/
√

n some node has opposite sign

total gap at least 1/
√

n some gap at least 1/n1.5

• Over B steps, communicate across gap: V improves by ∼ α/n3

– Convergence time: O(n3/α) α ∼ 1/degree −→ O(n4)
– Account for simultaneous contributions of all gaps: O(n2/α)
– Keep degree bounded −→ 1/α bounded

• Averaging in time-varying bidirectional graphs:
no harder than consensus on fixed graphs

• Various convergence proofs of optimization algs. remain valid
– Improves the convergence time estimate for subgradient

methods [Nedic, Olshevsky, Ozdaglar, JNT, 09]

Averaging in Time-Varying Setting

• x(t + 1) = A(t)x(t)

– A(t) doubly stochastic, for all t,

– nonzero aij(t) ≥ α > 0

– O(n2/α)

• Improved convergence rate

– exchange “load” with up to two neighbors at a time

– can use α = O(1)

– convergence time: O(n2)

• Is there a Ω(n2) bound to be discovered?

52



Closing Thoughts

Engineering

– Bayesian: near-optimal designs possible

– Naive: interesting, manageable design questions

Social Networks

– What are the plausible models?
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