Some Models of Information Aggregation and Consensus in Networks

John N. Tsitsiklis MIT

ACCESS, KTH January 2011

Overview

- Information propagation/aggregation in networks
 - Engineered versus social networks
 - Bayesian versus naive updates
- Review a few key models and results

The Wisdom of Crowds

1 :

THE WISDOM OF CROWDS JAMES SUROWIECKI

merichted Mater

Why the Many Are Smarter than the Few and How Collective Wisdom Shapes Business, Economies, Societies, and Nations

Wisdom or Madness of Crowds?

- Charles Mackay (London, 1841): Extraordinary Popular Delusions and the Madness of Crowds
 - "Men, it has been well said, think in herds; it will be seen that they go mad in herds,..."

Sensor and other Engineered Networks

- Fusion of available information
 - we get to design the nodes' behavior

The Basic Setup

- Each node *i* endowed with private information X_i
 - Nodes form opinions, make decisions
 - Nodes observe opinions/decisions or receive messages
 - Nodes update opinions/decisions
 - Everyone wants a "good" decision; common objective

The Basic Setup

- Each node *i* endowed with private information X_i
 - Nodes form opinions, make decisions
 - Nodes observe opinions/decisions or receive messages
 - Nodes update opinions/decisions
 - Everyone wants a "good" decision; common objective
 - Social science: postulate update mechanism
 - Engineering: design/optimize update mechanism

The Basic Setup

- Each node *i* endowed with private information X_i
 - Nodes form opinions, make decisions
 - Nodes observe opinions/decisions or receive messages
 - Nodes update opinions/decisions
 - Everyone wants a "good" decision; common objective
 - Social science: postulate update mechanism
 - Engineering: design/optimize update mechanism
 - Questions
 - Convergence? To what? How fast? Quality of limit?
 - Does the underlying graph matter? (Tree, acyclic, random,...

Bayesian Models

(Bickchandani, Hisrchleifer, Welch, 92; Banerjee, 92)

• Private info points to the better one, with some probability of error

(Bickchandani, Hisrchleifer, Welch, 92; Banerjee, 92)

• Private info points to the better one, with some probability of error

(Bickchandani, Hisrchleifer, Welch, 92; Banerjee, 92)

• Private info points to the better one, with some probability of error

• Information is there

(Bickchandani, Hisrchleifer, Welch, 92; Banerjee, 92)

• Private info points to the better one, with some probability of error

Tandem networks

- X_i are i.i.d.; $H_0 : X_i \sim \mathbb{P}_0$, $H_1 : X_i \sim \mathbb{P}_1$
- binary message/decision functions γ_i : $Y_i = \gamma_i(X_i, Y_{i-1})$

Tandem networks

- X_i are i.i.d.; $H_0 : X_i \sim \mathbb{P}_0$, $H_1 : X_i \sim \mathbb{P}_1$
- binary message/decision functions γ_i : $Y_i = \gamma_i(X_i, Y_{i-1})$
- "Social network" view: each γ_i is myopic–Bayes optimal
- "Engineered system view": $\{\gamma_i\}$ designed for best end-decision
 - simple sensor network [Cover, 1969]

•
$$e_n = \mathbb{P}(Y_n \text{ is incorrect}) \to 0$$
 ?

The Two Regimes

Bounded likelihood ratios (B-LR): $0 < a < \frac{d \mathbb{P}_1}{d \mathbb{P}_0}(X_i) < b < \infty$

never get compelling evidence

Unbounded likelihood ratios (U-LR): $0 < \frac{d \mathbb{P}_1}{d \mathbb{P}_0}(X_i) < \infty$

arbitrarily compelling evidence is possible

 $e_n \sim \exp\{-\lambda n\}$ λ is known (JNT, 88)

 $e_n \sim \exp\{-\lambda n\}$ λ is known (JNT, 88)

worse error exponent

 $e_n \sim \exp\{-\lambda n\}$ λ is known (JNT, 88)

less information but "same performance"

(Tay, Win & JNT, 08)

 $e_n \sim \exp\{-\lambda n\}$ λ is known (JNT, 88)

worse error exponent

less information but "same performance" (Tay, Win & JNT, 08)

more information but "same performance" (Kreidl, Zoumpoulis & JNT, 10)

A Perspective on Bayesian Optimality

• Engineering

- Optimal rules are hard to find
- Can design "good" schemes (asymptotic, etc.)

• Social Networks

- Is Bayesian updating plausible?

"Naive" Information Aggregation (Consensus and Averaging)

The Setting

- *n* agents
 - starting values $x_i(0)$
- reach consensus on some x^* , with either:

$$- \min_{i} x_{i}(0) \le x^{*} \le \max_{i} x_{i}(0) \quad (\text{consensus})$$
$$- x^{*} = \frac{x_{1}(0) + \dots + x_{n}(0)}{n} \quad (\text{averaging})$$

The Setting

- *n* agents
 - starting values $x_i(0)$
- reach consensus on some x^* , with either:

$$- \min_{i} x_{i}(0) \le x^{*} \le \max_{i} x_{i}(0) \quad (\text{consensus})$$
$$- x^{*} = \frac{x_{1}(0) + \dots + x_{n}(0)}{n} \quad (\text{averaging})$$

• simple updates, such as:
$$x_i := \frac{x_i + x_j}{2}$$

Social sciences

- Merging of "expert" opinions
- Evolution of public opinion
- Evolution of reputation
- Modeling of jurors
- Language evolution
- interested in modeling, analysis (descriptive theory)
 - ... and narratives

Engineering

- Distributed computation and sensor networks
 - Fusion of individual estimates
 - Distributed Kalman filtering
 - Distributed optimization
 - Distributed reinforcement learning
- Networking
 - Load balancing and resource allocation
 - Clock synchronization
 - Reputation management in ad hoc networks
 - Network monitoring
- Multiagent coordination and control
 - Coverage control
 - Monitoring
 - Creating virtual coordinates for geographic routing
 - Decentralized task assignment
 - Flocking

Distributed optimization

 $\min_{x} f(x)$

centralized $x := x - \gamma \nabla f(x) + \text{noise}$

distributed

 $x^i := x - \gamma \nabla f(x) + \text{noise}_i$

Distributed optimization

$$\min_{x} f(x) \qquad \qquad \min_{x} \sum_{i=1}^{n} f_{i}(x)$$
centralized $x := x - \gamma \nabla f(x) + \text{noise} \qquad x := x - \gamma \sum_{i=1}^{n} \nabla f_{i}(x)$
distributed $x^{i} := x - \gamma \nabla f(x) + \text{noise}_{i} \qquad x^{i} := x^{i} - \gamma \nabla f_{i}(x^{i})$

Distributed optimization

 \boldsymbol{n}

$$\begin{array}{ll} \min_{x} f(x) & \min_{x} \sum_{i=1}^{n} f_{i}(x) \\ \text{centralized} & x := x - \gamma \nabla f(x) + \text{noise} & x := x - \gamma \sum_{i=1}^{n} \nabla f_{i}(x) \\ \text{distributed} & x^{i} := x - \gamma \nabla f(x) + \text{noise}_{i} & x^{i} := x^{i} - \gamma \nabla f_{i}(x^{i}) \end{array}$$

reconcile updates through a consensus or averaging algorithm

The DeGroot opinion pooling model (1974)

$$x_i(t+1) = \sum_j a_{ij} x_j(t) \qquad a_{ij} \ge 0, \quad \sum_j a_{ij} = 1$$

x(t+1) = Ax(t)

- A: stochastic matrix
- Markov chain theory + "mixing conditions"
 - \longrightarrow convergence of A^t , to matrix with equal rows
 - \longrightarrow convergence of x_i to $\sum_j \pi_j x_j$
 - \longrightarrow convergence rate estimates

di

The DeGroot opinion pooling model (1974)

$$x_i(t+1) = \sum_j a_{ij} x_j(t) \qquad a_{ij} \ge 0, \quad \sum_j a_{ij} = 1$$

x(t+1) = Ax(t)

- A: stochastic matrix
- Markov chain theory + "mixing conditions"

 \longrightarrow convergence of A^t , to matrix with equal rows

- \longrightarrow convergence of x_i to $\sum_j \pi_j x_j$
- \longrightarrow convergence rate estimates
- Averaging algorithms
 - A doubly stochastic: $\mathbf{1}' A x = \mathbf{1}' x$, where $\mathbf{1}' = [1 \ 1 \ \dots \ 1]$
 - $x_1 + \cdots + x_n$ is conserved

- convergence to
$$x^* = \frac{x_1(0) + \dots + x_n(0)}{x_n(0)}$$

di

Convergence time of consensus algorithms

Convergence time (time to get close to "steady-state") $d_{ij}(t)$: delay of th

Convergence time of consensus algorithms

 $x_i(t+1) = \sum_j a_{ij} x_j(t) \qquad a_{ij} \ge 0, \quad \sum_j a_{ij} = 1$ $x(t+1) = Ax(t) \qquad A: \text{ stochastic matr}$

Convergence time (time to get close to "steady-state") $d_{ij}(t)$: delay of th

Equal weight to all neighbors Directed graphs: exponential(n) Undirected graphs: $O(n^3)$, tight (Landau and Odlyzko, 1981)

 x_i

nonzero wl

A critique

- Social Networks
 - "The process that it describes is intuitively appealing."
 (DeGroot, 74)
 - How plausible is this type of synchronism?

• Engineering

- If the graph is indeed fixed:
 elect a leader, form a spanning tree, accumulate on tree
- Want simplicity, and robustness w.r.t. changing topologies, failures, etc.
- Different models and specs?

Time-Varying/Chaotic Environments

• Fairly arbitrary sequence of graphs/matrices A(t): worst-case analysis

$$x_i(t+1) = \sum_j \frac{a_{ij}(t)}{x_j(t)} x_j(t)$$

 $a_{ij}(t)$: nonzero whenever *i* receives message from *j*

Consensus convergence

$$x_i(t+1) = \sum_j a_{ij}(t) x_j(t)$$

- $a_{ii}(t) > 0;$ $a_{ij}(t) > 0 \implies a_{ij}(t) \ge \alpha > 0$
- "strong connectivity in bounded time": over B time steps "communication graph" is strongly connected
- Convergence to consensus: $\forall i: x_i(t) \rightarrow x^* = \text{convex combination of initial values}$ (JNT, Bertsekas, Athans, 86; Jadbabaie et al., 03)
- "convergence time": exponential in n and B
 - even with:
 symmetric graph at each time
 equal weight to each neighbor
 (Cao, Spielman, Morse, 05)

Averaging in Time-Varying Setting

- x(t+1) = A(t)x(t)
 - A(t) doubly stochastic, for all t,
 - nonzero $a_{ij}(t) \ge \alpha > 0$
 - $O(n^2/\alpha)$ [Nedic, Olshevsky, Ozdaglar, JNT, 09]

Averaging in Time-Varying Setting

- x(t+1) = A(t)x(t)
 - A(t) doubly stochastic, for all t,
 - nonzero $a_{ij}(t) \ge \alpha > 0$
 - $O(n^2/\alpha)$ [Nedic, Olshevsky, Ozdaglar, JNT, 09]
 - Improved convergence rate
 - exchange "load" with up to two neighbors at a time
 - can use $\alpha = O(1)$
 - convergence time: $O(n^2)$

Averaging in Time-Varying Setting

- x(t+1) = A(t)x(t)
 - A(t) doubly stochastic, for all t,
 - nonzero $a_{ij}(t) \ge \alpha > 0$
 - $O(n^2/\alpha)$ [Nedic, Olshevsky, Ozdaglar, JNT, 09]
 - Improved convergence rate
 - exchange "load" with up to two neighbors at a time
 - can use $\alpha = O(1)$
 - convergence time: $O(n^2)$
 - Is there a $\Omega(n^2)$ bound to be discovered?

Closing Thoughts

Engineering

- Bayesian: near-optimal designs possible
- Naive: interesting, manageable design questions

Social Networks

- What are the plausible models?

Thank you!