Some Models of Information Aggregation and Consensus in Networks

John N. Tsitsiklis
MIT

ACCESS, KTH
January 2011

Overview

- Information propagation/aggregation in networks
- Engineered versus social networks
- Bayesian versus naive updates
- Review a few key models and results

The Wisdom of Crowds

THE

Wisdom of Crowds
James Surowiecki

Wisdom or Madness of Crowds?

- Charles Mackay (London, 1841): Extraordinary Popular Delusions and the Madness of Crowds
- "Men, it has been well said, think in herds; it will be seen that they go mad in herds,..."

Sensor and other Engineered Networks

- Fusion of available information
- we get to design the nodes' behavior

The Basic Setup

- Each node i endowed with private information X_{i}
- Nodes form opinions, make decisions
- Nodes observe opinions/decisions or receive messages
- Nodes update opinions/decisions
- Everyone wants a "good"decision; common objective

The Basic Setup

- Each node i endowed with private information X_{i}
- Nodes form opinions, make decisions
- Nodes observe opinions/decisions or receive messages
- Nodes update opinions/decisions
- Everyone wants a "good"decision; common objective
- Social science: postulate update mechanism
- Engineering: design/optimize update mechanism

The Basic Setup

- Each node i endowed with private information X_{i}
- Nodes form opinions, make decisions
- Nodes observe opinions/decisions or receive messages
- Nodes update opinions/decisions
- Everyone wants a "good"decision; common objective
- Social science: postulate update mechanism
- Engineering: design/optimize update mechanism
- Questions
- Convergence? To what? How fast? Quality of limit?
- Does the underlying graph matter? (Tree, acyclic, random,...

Bayesian Models

Where do we eat tonight?

- Private info points to the better one, with some probability of error

Where do we eat tonight?

(Bickchandani, Hisrchleifer, Welch, 92; Banerjee, 92)

- Private info points to the better one, with some probability of error

Where do we eat tonight?

(Bickchandani, Hisrchleifer, Welch, 92; Banerjee, 92)

- Private info points to the better one, with some probability of error

- Information is there

Where do we eat tonight?

(Bickchandani, Hisrchleifer, Welch, 92; Banerjee, 92)

- Private info points to the better one, with some probability of error

- Information is there but is not used

Tandem networks

- X_{i} are i.i.d.; $H_{0}: X_{i} \sim \mathbb{P}_{0}, H_{1}: X_{i} \sim \mathbb{P}_{1}$
- binary message/decision functions $\gamma_{i}: Y_{i}=\gamma_{i}\left(X_{i}, Y_{i-1}\right)$

Tandem networks

- X_{i} are i.i.d.; $H_{0}: X_{i} \sim \mathbb{P}_{0}, H_{1}: X_{i} \sim \mathbb{P}_{1}$
- binary message/decision functions $\gamma_{i}: Y_{i}=\gamma_{i}\left(X_{i}, Y_{i-1}\right)$
- "Social network" view: each γ_{i} is myopic-Bayes optimal
- "Engineered system view": $\left\{\gamma_{i}\right\}$ designed for best end-decision
- simple sensor network [Cover, 1969]
- $e_{n}=\mathbb{P}\left(Y_{n}\right.$ is incorrect $) \rightarrow 0$?

The Two Regimes

Bounded likelihood ratios (B-LR): $0<a<\frac{d \mathbb{P}_{1}}{d \mathbb{P}_{0}}\left(X_{i}\right)<b<\infty$ never get compelling evidence

Unbounded likelihood ratios (U-LR): $0<\frac{d \mathbb{P}_{1}}{d \mathbb{P}_{0}}\left(X_{i}\right)<\infty$ arbitrarily compelling evidence is possible

Tandem Network Results

Social

U-LR:
$e_{n} \rightarrow 0$
(Papastavrou
\& Athans, 92)

B-LR:
$e_{n} \nrightarrow 0$
\Longleftarrow
$e_{n} \nrightarrow 0$
(Koplowitz, 75)
$e_{n} \rightarrow 0$
(Koplowitz, 75)

Engineered - Architectural Comparisons

Engineered - Architectural Comparisons

$e_{n} \sim \exp \{-\lambda n\}$
λ is known (JNT, 88)

Engineered - Architectural Comparisons

$e_{n} \sim \exp \{-\lambda n\}$
λ is known (JNT, 88)

worse error exponent

Engineered - Architectural Comparisons

$e_{n} \sim \exp \{-\lambda n\}$
λ is known (JNT, 88)

worse error exponent

less information
but "same performance"
(Tay, Win \& JNT, 08)

Engineered - Architectural Comparisons

$e_{n} \sim \exp \{-\lambda n\}$
λ is known (JNT, 88)

worse error exponent

less information
but "same performance"
(Tay, Win \& JNT, 08)

more information
but "same performance"
(Kreidl, Zoumpoulis \& JNT, 10)

A Perspective on Bayesian Optimality

- Engineering
- Optimal rules are hard to find
- Can design "good" schemes (asymptotic, etc.)
- Social Networks
- Is Bayesian updating plausible?
"Naive" Information Aggregation (Consensus and Averaging)

The Setting

- n agents
- starting values $x_{i}(0)$
- reach consensus on some x^{*}, with either:

$$
\begin{aligned}
& -\min _{i} x_{i}(0) \leq x^{*} \leq \max _{i} x_{i}(0) \quad \text { (consensus) } \\
& -x^{*}=\frac{x_{1}(0)+\cdots+x_{n}(0)}{n} \quad \text { (averaging) }
\end{aligned}
$$

The Setting

- n agents
- starting values $x_{i}(0)$
- reach consensus on some x^{*}, with either:

$$
\begin{aligned}
& -\min _{i} x_{i}(0) \leq x^{*} \leq \max _{i} x_{i}(0) \quad \text { (consensus) } \\
& -x^{*}=\frac{x_{1}(0)+\cdots+x_{n}(0)}{n} \quad \text { (averaging) }
\end{aligned}
$$

- simple updates, such as: $x_{i}:=\frac{x_{i}+x_{j}}{2}$

Social sciences

- Merging of "expert" opinions
- Evolution of public opinion
- Evolution of reputation
- Modeling of jurors
- Language evolution
- interested in modeling, analysis (descriptive theory)
- ... and narratives

Engineering

- Distributed computation and sensor networks
- Fusion of individual estimates
- Distributed Kalman filtering
- Distributed optimization
- Distributed reinforcement learning
- Networking
- Load balancing and resource allocation
- Clock synchronization
- Reputation management in ad hoc networks
- Network monitoring
- Multiagent coordination and control
- Coverage control
- Monitoring
- Creating virtual coordinates for geographic routing
- Decentralized task assignment
- Flocking

Distributed optimization

$$
\min _{x} f(x)
$$

$\begin{array}{ll}\text { centralized } & x:=x-\gamma \nabla f(x)+\text { noise } \\ \text { distributed } & x^{i}:=x-\gamma \nabla f(x)+\text { noise }_{i}\end{array}$

Distributed optimization

	$\min _{x} f(x)$	$\min _{x} \sum_{i=1}^{n} f_{i}(x)$
centralized	$x:=x-\gamma \nabla f(x)+$ noise	$x:=x-\gamma \sum_{i=1}^{n} \nabla f_{i}(x)$
distributed	$x^{i}:=x-\gamma \nabla f(x)+$ noise $_{i}$	$x^{i}:=x^{i}-\gamma \nabla f_{i}\left(x^{i}\right)$

Distributed optimization

	$\min _{x} f(x)$	$\min _{x} \sum_{i=1}^{n} f_{i}(x)$
centralized	$x:=x-\gamma \nabla f(x)+$ noise	$x:=x-\gamma \sum_{i=1}^{n} \nabla f_{i}(x)$
distributed	$x^{i}:=x-\gamma \nabla f(x)+$ noise $_{i}$	$x^{i}:=x^{i}-\gamma \nabla f_{i}\left(x^{i}\right)$

reconcile updates through a consensus or averaging algorithm

The DeGroot opinion pooling model

$$
\begin{array}{ll}
x_{i}(t+1)=\sum_{j} a_{i j} x_{j}(t) & a_{i j} \geq 0, \quad \sum_{j} a_{i j}=1 \\
x(t+1)=A x(t) & A: \text { stochastic matrix }
\end{array}
$$

- Markov chain theory + "mixing conditions"

\longrightarrow convergence of A^{t}, to matrix with equal rows
\longrightarrow convergence of x_{i} to $\sum_{j} \pi_{j} x_{j}$
\longrightarrow convergence rate estimates

The DeGroot opinion pooling model (1974)

$$
\begin{array}{ll}
x_{i}(t+1)=\sum_{j} a_{i j} x_{j}(t) & a_{i j} \geq 0, \quad \sum_{j} a_{i j}=1 \\
x(t+1)=A x(t) & A: \text { stochastic matrix }
\end{array}
$$

- Markov chain theory + "mixing conditions"

\longrightarrow convergence of A^{t}, to matrix with equal rows
\longrightarrow convergence of x_{i} to $\sum_{j} \pi_{j} x_{j}$
\longrightarrow convergence rate estimates
- Averaging algorithms
- A doubly stochastic: $1^{\prime} A x=1^{\prime} x, \quad$ where $1^{\prime}=\left[\begin{array}{llll}1 & 1 & \ldots & 1\end{array}\right]$
$-x_{1}+\cdots+x_{n}$ is conserved
- convergence to $x^{*}=\frac{x_{1}(0)+\cdots+x_{n}(0)}{n}$

Convergence time of consensus algorithms

$$
\begin{aligned}
& x_{i}(t+1)=\sum_{j} a_{i j} x_{j}(t) \\
& x(t+1)=A x(t)
\end{aligned}
$$

$a_{i j} \geq 0, \quad \sum_{j} a_{i j}=1$
A: stochastic matrix

Convergence time (time to get close to "steady-state")

Convergence time of consensus algorithms

$$
\begin{aligned}
& x_{i}(t+1)=\sum_{j} a_{i j} x_{j}(t) \\
& x(t+1)=A x(t)
\end{aligned}
$$

$a_{i j} \geq 0, \quad \sum_{j} a_{i j}=1$
A: stochastic matrix

Convergence time (time to get close to "steady-state")

Equal weight to all neighbors Directed graphs: exponential(n)

Undirected graphs: $O\left(n^{3}\right)$, tight
(Landau and Odlyzko, 1981)

A critique

- Social Networks
- "The process that it describes is intuitively appealing." (DeGroot, 74)
- How plausible is this type of synchronism?
- Engineering
- If the graph is indeed fixed: elect a leader, form a spanning tree, accumulate on tree
- Want simplicity, and robustness w.r.t. changing topologies, failures, etc.
- Different models and specs?

Time-Varying/Chaotic Environments

- Fairly arbitrary sequence of graphs/matrices $A(t)$: worst-case analysis

$$
x_{i}(t+1)=\sum_{j} a_{i j}(t) x_{j}(t)
$$

$a_{i j}(t)$: nonzero whenever i receives message from j

Consensus convergence

$$
x_{i}(t+1)=\sum_{j} a_{i j}(t) x_{j}(t)
$$

- $a_{i i}(t)>0$;

$$
a_{i j}(t)>0 \Rightarrow a_{i j}(t) \geq \alpha>0
$$

- "strong connectivity in bounded time": over B time steps "communication graph" is strongly connected
- Convergence to consensus:
$\forall i: \quad x_{i}(t) \rightarrow x^{*}=$ convex combination of initial values
(JNT, Bertsekas, Athans, 86; Jadbabaie et al., 03)
- "convergence time": exponential in n and B
- even with:
symmetric graph at each time equal weight to each neighbor (Cao, Spielman, Morse, 05)

Averaging in Time-Varying Setting

- $x(t+1)=A(t) x(t)$
- $A(t)$ doubly stochastic, for all t,
- nonzero $a_{i j}(t) \geq \alpha>0$
- $O\left(n^{2} / \alpha\right) \quad$ [Nedic, Olshevsky, Ozdaglar, JNT, 09]

Averaging in Time-Varying Setting

- $x(t+1)=A(t) x(t)$
- $A(t)$ doubly stochastic, for all t,
- nonzero $a_{i j}(t) \geq \alpha>0$
$-O\left(n^{2} / \alpha\right) \quad$ [Nedic, Olshevsky, Ozdaglar, JNT, 09]
- Improved convergence rate
- exchange "Ioad" with up to two neighbors at a time
- can use $\alpha=O(1)$
- convergence time: $O\left(n^{2}\right)$

Averaging in Time-Varying Setting

- $x(t+1)=A(t) x(t)$
- $A(t)$ doubly stochastic, for all t,
- nonzero $a_{i j}(t) \geq \alpha>0$
$-O\left(n^{2} / \alpha\right) \quad$ [Nedic, Olshevsky, Ozdaglar, JNT, 09]
- Improved convergence rate
- exchange "load" with up to two neighbors at a time
- can use $\alpha=O(1)$
- convergence time: $O\left(n^{2}\right)$
- Is there a $\Omega\left(n^{2}\right)$ bound to be discovered?

Closing Thoughts

Engineering

- Bayesian: near-optimal designs possible
- Naive: interesting, manageable design questions

Social Networks

- What are the plausible models?

Thank you!

