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Overview

e Information propagation/aggregation in networks

Engineered versus social networks

Bayesian versus naive updates

e Review a few key models and results




T he Wisdom of Crowds
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wisdom or Madness of Crowds?

Extraordinary e Charles Mackay (London, 1841):
P lar Delusions 2 :
PR e Extraordinary Popular Delusions
and the Madness of Cro\\;ds and the Mad neSS Of CrOWdS

Charles Mackay

“Men, it has been well said,
think in herds; it will be seen
that they go mad in herds,...”




Sensor and other Engineered Networks

e Fusion of available information

— we get to design the nodes’ behavior




The Basic Setup

e Each node : endowed with private information X;
— Nodes form opinions, make decisions
— Nodes observe opinions/decisions or receive messages
— Nodes update opinions/decisions

— Everyone wants a ‘‘good’ decision; common objective
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The Basic Setup

e Each node : endowed with private information X;
— Nodes form opinions, make decisions
— Nodes observe opinions/decisions or receive messages
— Nodes update opinions/decisions

— Everyone wants a ‘‘good’ decision; common objective

e Social science: postulate update mechanism

e Engineering: design/optimize update mechanism

e Questions

— Convergence? To what? How fast? Quality of limit?

— Does the underlying graph matter? (Tree, acyclic, random,. ..




Bayesian Models




Where do we eat tonight?

(Bickchandani, Hisrchleifer, Welch, 92; Banerjee, 92)

e Private info points to the better one,
with some probability of error
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Where do we eat tonight?

(Bickchandani, Hisrchleifer, Welch, 92; Banerjee, 92)

e Private info points to the better one,
with some probability of error

A A

A A

e Information is there but is not used




Tandem networks
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Tandem networks

X1 X2 Xn

e X, arei.i.d.; Hy: X; ~Pg, H{ : X; ~ P

e binary message/decision functions ~;: Y, = ~,;(X,;,Y;_1)

e '‘Social network” view: each ~; is myopic—Bayes optimal
e "“Engineered system view' : {v;} designed for best end-decision

— simple sensor network

o ¢, =P(Yy, is incorrect) — 0 7




The Two Regimes

dP
Bounded likelihood ratios (B-LR): 0 < a < dTDl(Xi) <b< oo
0

never get compelling evidence

dP
Unbounded likelihood ratios (U-LR): 0< dTDl(XZ-) < 00
0

arbitrarily compelling evidence is possible




Tandem Network Results ¢ o ... o

U-LR:

B-LR:

B-LR,
ternary
messages

Social
en — 0O

(Papastavrou
& Athans, 92)

en 7~ 0

€n7L>O

(Dia & JNT, 09)

Engineered

en — 0O

(Cover, 69)

but slowly

(Tay, Win & JNT, 08)

en 7~ 0

(Koplowitz, 75)

€n — O
(Koplowitz, 75)




Engineered — Architectural Comparisons
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Engineered — Architectural Comparisons

(g

worse error exponent

en ~ exp{—An}
A is known (JNT, 88)

N\ \yop /A

less information
but ‘“same performance”
(Tay, Win & JNT, 08)

more information
but “same performance”
(Kreidl, Zoumpoulis & JNT, 10)




A Perspective on Bayesian Optimality

e EnNngineering
— Optimal rules are hard to find

— Can design “good” schemes (asymptotic, etc.)

e Social Networks

— Is Bayesian updating plausible?




“Naive” Information Aggregation
(Consensus and Averaging)




The Setting

e 7. agents

— starting values x,(0)

e reach consensus on some z*, with either:

— min; z;(0) < z* < max;z;(0) (consensus)

n




The Setting

e 7. agents

— starting values x,(0)

e reach consensus on some z*, with either:

— min; z;(0) < z* < max;z;(0) (consensus)

n

e simple updates, such as: z; = -




Social sciences

Merging of “expert” opinions
Evolution of public opinion
Evolution of reputation
Modeling of jurors

Language evolution

interested in modeling, analysis (descriptive theory)

— ... and narratives




Engineering

Fusion of individual estimates
Distributed Kalman filtering
Distributed optimization
Distributed reinforcement learning

Load balancing and resource allocation
Clock synchronization

Reputation management in ad hoc networks
Network monitoring

Coverage control

Monitoring

Creating virtual coordinates for geographic routing
Decentralized task assignment

Flocking




Distributed optimization

centralized

distributed

min f(x)

x .= x— vV f(x) 4+ noise

z' = x — vV f(z) + noise;




Distributed optimization

min f(z) min ; fi(z)
centralized =z — vV f(z) + noise r:=z—v) Vfi(z)
i=1

distributed z' = x — vV f(z) + noise; A g




Distributed optimization

min f(z) min »  fi(z)
* i=1
centralized x .= x — vV [f(x) + noise T =T — Vi V f;(x)
i=1

distributed z' 1=z — vV f(z) + noise; A g

reconcile updates through a consensus or averaging algorithm




The DeGroot opinion pooling model

it + 1) =D a4 z;(t) a;j >0, Yja;=1
J

x(t+1) = Az(t) A: stochastic matrix

e Markov chain theory 4+ “mixing conditions”
— convergence of A!, to matrix with equal rows
— convergence of x; to >, mx;

—— convergence rate estimates
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it + 1) =D a4 z;(t) a;j >0, Yja;=1
J

x(t+1) = Az(t) A: stochastic matrix

e Markov chain theory 4+ “mixing conditions”
— convergence of A!, to matrix with equal rows
— convergence of x; to >, mx;

—— convergence rate estimates

e Averaging algorithms

— A doubly stochastic: 1’Az =12z, wherel’ =11 ...

— x1+ .-+ xn is conserved
21(0) + - + zn(0)

n

— convergence to z* =

1]




Convergence time of consensus algorithims
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Convergence time (time to get close to ‘“steady-state”)




Convergence time of consensus algorithims

it + 1) =) a5 %;(t) a;j >0, Yja; =1
J

x(t+1) = Azx(2t) A: stochastic matrix

Convergence time (time to get close to ‘“steady-state”)

Equal weight to all neighbors Undirected graphs: O(n>), tight

Directed graphs: exponential(n)
@r&s@




A critique

e Social Networks

“The process that it describes is intuitively appealing.”

— How plausible is this type of synchronism?

e EnNgineering

— If the graph is indeed fixed:
elect a leader, form a spanning tree, accumulate on tree

— Want simplicity, and robustness w.r.t. changing topologies,
failures, etc.

— Different models and specs?




Time-Varying/Chaotic Environments

e Fairly arbitrary sequence of graphs/matrices A(t):
worst-case analysis

pi(t4+1) =3 a;;(D)z; () T
; J J /

a;;(t): nonzero whenever i receives message from j




consensus convergence

zi(t+1) = 3 ai;(t)z;(t)
J

a;;(t) > 0; aij(t) >0 = aij(t) >a>0

“strong connectivity in bounded time’ :
over B time steps “communication graph”
is strongly connected

Convergence to consensus:
Vi: z;(t) — 2™ =convex combination of initial values

“‘convergence time"”: exponential in n and B

— even with:
symmetric graph at each time
equal weight to each neighbor




Averading in Time-Varying Setting

o z(t+1)=A1)z(t)
— A(t) doubly stochastic, for all ¢,
— nonzero a;;(t) > a >0

— O(n2/a) [Nedic, Olshevsky, Ozdaglar, JNT, 09]
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Averading in Time-Varying Setting

o z(t+1)=A1)x(t)
— A(t) doubly stochastic, for all ¢,
— nonzero a;;(t) > a >0

— O(n?/a) [Nedic, Olshevsky, Ozdaglar, JNT, 09]

e Improved convergence rate
— exchange “load” with up to two neighbors at a time
— can use a=0(1)

— convergence time: O(n?)

e Is there a 2(n?) bound to be discovered?




Closing T houghts

Engineering
— Bayesian: near-optimal designs possible

— Naive: interesting, manageable design questions

Social Networks

— What are the plausible models?
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