Back to the Roots: Solving Polynomial Systems with Numerical Linear Algebra Tools

Bart De Moor

Katholieke Universiteit Leuven
Department of Electrical Engineering ESAT/SCD
Outline

1. Introduction
2. History
3. Linear Algebra
4. Multivariate Polynomials
5. Applications
6. Conclusions
System Identification: PEM

- LTI models
- Non-convex optimization
- Considered 'solved' early nineties

Linear Algebra approach

⇒ Subspace methods
Why Linear Algebra?

Nonlinear regression, modelling and clustering

- Most regression, modelling and clustering problems are nonlinear when formulated in the input data space
- This requires nonlinear nonconvex optimization algorithms

Linear Algebra approach

⇒ Least Squares Support Vector Machines

- ‘Kernel trick’ = projection of input data to a high-dimensional feature space
- Regression, modelling, clustering problem becomes a large scale linear algebra problem (set of linear equations, eigenvalue problem)
Nonlinear Polynomial Optimization

- Polynomial object function + polynomial constraints
- Non-convex
- Computer Algebra, Homotopy methods, Numerical Optimization
- Considered 'solved' by mathematics community

Linear Algebra Approach

⇒ Linear Polynomial Algebra
Research on Three Levels

Conceptual/Geometric Level
- Polynomial system solving is an eigenvalue problem!
- Row and Column Spaces: Ideal/Variety ↔ Row space/Kernel of M,
ranks and dimensions, nullspaces and orthogonality
- Geometrical: intersection of subspaces, angles between subspaces,
 Grassmann’s theorem,…

Numerical Linear Algebra Level
- Eigenvalue decompositions, SVDs,…
- Solving systems of equations (consistency, nb sols)
- QR decomposition and Gram-Schmidt algorithm

Numerical Algorithms Level
- Modified Gram-Schmidt (numerical stability), GS ‘from back to front’
- Exploiting sparsity and Toeplitz structure (computational complexity
 $O(n^2)$ vs $O(n^3)$), FFT-like computations and convolutions,…
- Power method to find smallest eigenvalue (= minimizer of polynomial
 optimization problem)
Four instances of polynomial rooting problems

\[p(\lambda) = \det(A - \lambda I) = 0 \]

\[(x - 1)(x - 3)(x - 2) = 0 \]
\[-(x - 2)(x - 3) = 0 \]

\[x^2 + 3y^2 - 15 = 0 \]
\[y - 3x^3 - 2x^2 + 13x - 2 = 0 \]

\[\min_{x,y} x^2 + y^2 \]
\[\text{s.t. } y - x^2 + 2x - 1 = 0 \]
Outline

1 Introduction
2 History
3 Linear Algebra
4 Multivariate Polynomials
5 Applications
6 Conclusions
Solving Polynomial Systems: a long and rich history...

Diophantus (c200-c284) *Arithmetica*

Al-Khwarizmi (c780-c850)

Zhu Shijie (c1260-c1320) *Jade Mirror of the Four Unknowns*

Pierre de Fermat (c1601-1665)

René Descartes (1596-1650)

Isaac Newton (1643-1727)

Gottfried Wilhelm Leibniz (1646-1716)
... leading to “Algebraic Geometry”

<table>
<thead>
<tr>
<th>History</th>
<th>Linear Algebra</th>
<th>Multivariate Polynomials</th>
<th>Applications</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Etienne Bézout (1730-1783)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jean-Victor Poncelet (1788-1867)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>August Ferdinand Möbius (1790-1868)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Evariste Galois (1811-1832)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Arthur Cayley (1821-1895)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leopold Kronecker (1823-1891)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Edmond Laguerre (1834-1886)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>James Joseph Sylvester (1814-1897)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Francis Sowerby Macaulay (1862-1937)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>David Hilbert (1862-1943)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Computational Algebraic Geometry

- Emphasis on symbolic manipulations
- Computer algebra
- Huge body of literature in Algebraic Geometry
- Computational tools: Gröbner Bases (next slide)

Wolfgang Gröbner (1899-1980)

Bruno Buchberger
Example: Gröbner basis

Input system:

\[x^2y + 4xy - 5y + 3 = 0 \]
\[x^2 + 4xy + 8y - 4x - 10 = 0 \]

- Generates simpler but equivalent system (same roots)
- Symbolic eliminations and reductions
- Monomial ordering (e.g., lexicographic)
- Exponential complexity
- Numerical issues! Coefficients become very large

Gröbner Basis:

\[-9 - 126y + 647y^2 - 624y^3 + 144y^4 = 0 \]
\[-1005 + 6109y - 6432y^2 + 1584y^3 + 228x = 0 \]
Outline

1. Introduction
2. History
3. Linear Algebra
4. Multivariate Polynomials
5. Applications
6. Conclusions
Homogeneous Linear Equations

\[
A \begin{bmatrix} X \\ \end{bmatrix} = 0
\]

\[p \times q \quad q \times (q - r) \quad p \times (q - r)\]

- \(C(A^T) \perp C(X)\)
- \(\text{rank}(A) = r\)
- \(\text{dim } N(A) = q - r = \text{rank}(X)\)

\[
A = \begin{bmatrix} U_1 & U_2 \end{bmatrix} \begin{bmatrix} S_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} V_1^T \\ V_2^T \end{bmatrix}
\]

\[
\downarrow
\]

\[
X = V_2
\]
Homogeneous Linear Equations

\[
A \times q = 0
\]

\[
\begin{pmatrix}
A & X \\
p \times q & q \times (q-r) & p \times (q-r)
\end{pmatrix}
\]

Reorder columns of \(A \) and partition

\[
\begin{align*}
\begin{bmatrix}
A_1 & A_2 \\
p \times q & p \times (q-r) & p \times r
\end{bmatrix} & \quad \text{rank}(A_2) = r \quad (A_2 \text{ full column rank})
\end{align*}
\]

Reorder rows of \(X \) and partition accordingly

\[
\begin{align*}
\begin{bmatrix}
A_1 & A_2 \\
q-r & q-r
\end{bmatrix}
\begin{bmatrix}
X_1 \\
r
\end{bmatrix}
\end{align*} = 0
\]

\[
\begin{align*}
\text{rank}(A_2) &= r \\
\uparrow \\
\text{rank}(X_1) &= q-r
\end{align*}
\]
Dependent and Independent Variables

\[
\begin{bmatrix}
A_1 & A_2
\end{bmatrix}
\begin{bmatrix}
\overline{X}_1 \\
\overline{X}_2
\end{bmatrix}
\begin{bmatrix}
q-r \\
r
\end{bmatrix} = 0
\]

- \(\overline{X}_1\): independent variables
- \(\overline{X}_2\): dependent variables

\[
\overline{X}_2 = -A_2^\dagger A_1 \overline{X}_1
\]

\[
\overline{A}_1 = -A_2 \overline{X}_2 \overline{X}_1^{-1}
\]

- Number of different ways of choosing \(r\) linearly independent columns out of \(q\) columns (upper bound):

\[
\binom{q}{q-r} = \frac{q!}{(q-r)! \, r!}
\]
What is the nullspace of \([A \quad B]\)?

\[
\begin{bmatrix}
A & X \\
B & Y
\end{bmatrix}
\begin{bmatrix}
X \\
0 \\
0 \\
Y
\end{bmatrix}
= 0
\]

Let \(\text{rank}([A \quad B]) = r_{AB}\)

\[
(q - r_A) + (t - r_B) + r_{AB} = (p + t) - r_{AB} \quad \Rightarrow \quad r_{AB} = r_A + r_B - r_{AB}
\]
Grassmann’s Dimension Theorem

\[
\begin{bmatrix}
A & B
\end{bmatrix}
\begin{bmatrix}
q-r_A & t-r_B & r_A+r_B-r_{AB} \\
X & 0 & Z_1 \\
0 & Y & Z_2
\end{bmatrix} = 0
\]

Intersection between column space of A and B:

\[AZ_1 = -BZ_2\]

Hermann Grassmann

\[\#(A \cup B) = \#A + \#B - \#(A \cap B)\]
Characteristic Polynomial

The eigenvalues of A are the roots of

$$p(\lambda) = \det(A - \lambda I) = 0$$

Companion Matrix

Solving

$$q(x) = 7x^3 - 2x^2 - 5x + 1 = 0$$

leads to

$$\begin{bmatrix}
0 & 1 & 0 \\
0 & 0 & 1 \\
-1/7 & 5/7 & 2/7
\end{bmatrix}
\begin{bmatrix}
1 \\
x \\
x^2
\end{bmatrix}
= x
\begin{bmatrix}
1 \\
x \\
x^2
\end{bmatrix}$$
Consider the univariate equation

\[x^3 + a_1 x^2 + a_2 x + a_3 = 0, \]

having three distinct roots \(x_1, x_2 \) and \(x_3 \)

\[
\begin{bmatrix}
 a_3 & a_2 & a_1 & 1 & 0 & 0 \\
 0 & a_3 & a_2 & a_1 & 1 & 0 \\
 0 & 0 & a_3 & a_2 & a_1 & 1 \\
\end{bmatrix}
\begin{bmatrix}
 1 & 1 & 1 \\
 x_1 & x_2 & x_3 \\
 x_1^2 & x_2^2 & x_3^2 \\
 x_1^3 & x_2^3 & x_3^3 \\
 x_1^4 & x_2^4 & x_3^4 \\
 x_1^5 & x_2^5 & x_3^5 \\
\end{bmatrix} = 0
\]

- Homogeneous linear system
- Rectangular Vandermonde
- corank = 3
- Observability matrix-like
- Realization theory!
Consider

\[x^3 + a_1 x^2 + a_2 x + a_3 = 0 \]
\[x^2 + b_1 x + b_2 = 0 \]

Build the Sylvester Matrix:

\[
\begin{bmatrix}
1 & a_1 & a_2 & a_3 & 0 \\
0 & 1 & a_1 & a_2 & a_3 \\
1 & b_1 & b_2 & 0 & 0 \\
0 & 1 & b_1 & b_2 & 0 \\
0 & 0 & 1 & b_1 & b_2 \\
\end{bmatrix}
\begin{bmatrix}
x \\
x^2 \\
x^3 \\
x^4 \\
\end{bmatrix} = 0
\]

- Corank of Sylvester matrix = number of common zeros
- null space = intersection of null spaces of two Sylvester matrices
- common roots follow from realization theory in null space
- notice ‘double’ Toeplitz-structure of Sylvester matrix
Sylvester Resultant

Consider two polynomials \(f(x) \) and \(g(x) \):

\[
f(x) = x^3 - 6x^2 + 11x - 6 = (x - 1)(x - 2)(x - 3)
\]

\[
g(x) = -x^2 + 5x - 6 = -(x - 2)(x - 3)
\]

Common roots iff \(S(f, g) = 0 \)

\[
S(f, g) = \det \begin{bmatrix}
-6 & 11 & -6 & 1 & 0 \\
0 & -6 & 11 & -6 & 1 \\
-6 & 5 & -1 & 0 & 0 \\
0 & -6 & 5 & -1 & 0 \\
0 & 0 & -6 & 5 & -1
\end{bmatrix}
\]
Two Univariate Polynomials

The corank of the Sylvester matrix is 2!

Sylvester’s construction can be understood from

\[
\begin{align*}
 f(x) &= 0 \\
 x \cdot f(x) &= 0 \\
 g(x) &= 0 \\
 x \cdot g(x) &= 0 \\
 x^2 \cdot g(x) &= 0
\end{align*}
\]

\[
\begin{bmatrix}
 1 & x & x^2 & x^3 & x^4 \\
 -6 & 11 & -6 & 1 & 0 \\
 -6 & 11 & -6 & 1 & 0 \\
 -6 & 5 & -1 & & \\
 -6 & 5 & -1 & & \\
\end{bmatrix}
\begin{bmatrix}
 1 \\
 1 \\
 x_1 \\
 x_2 \\
 x_3 \\
 x_4 \\
\end{bmatrix}
= 0
\]

where \(x_1 = 2 \) and \(x_2 = 3 \) are the common roots of \(f \) and \(g \)
The vectors in the canonical kernel K obey a ‘shift structure’:

$$\begin{bmatrix} 1 \\ x \\ x^2 \\ x^3 \end{bmatrix} x = \begin{bmatrix} x \\ x^2 \\ x^3 \\ x^4 \end{bmatrix}$$

The canonical kernel K is not available directly, instead we compute Z, for which $ZV = K$. We now have

$$S_1KD = S_2K$$
$$S_1ZVD = S_2ZV$$

leading to the generalized eigenvalue problem

$$(S_2Z)V = (S_1Z)VD$$
Outline

1. Introduction
2. History
3. Linear Algebra
4. Multivariate Polynomials
5. Applications
6. Conclusions
Consider

\[
\begin{align*}
 p(x, y) &= x^2 + 3y^2 - 15 = 0 \\
 q(x, y) &= y - 3x^3 - 2x^2 + 13x - 2 = 0
\end{align*}
\]

Fix a monomial order, e.g., \(1 < x < y < x^2 < xy < y^2 < x^3 < x^2y < \ldots\)

Construct \(M\): write the system in matrix-vector notation:

\[
\begin{bmatrix}
 1 & x & y & x^2 & xy & y^2 & x^3 & x^2y & xy^2 & y^3 \\
 -15 & 1 & 3 & -2 & 13 & 1 & -2 & -3 & 1 & 3 \\
 -15 & -15 & 1 & 3
\end{bmatrix}
\]
Null space based Root-finding

\[
\begin{align*}
\{
p(x, y) &= x^2 + 3y^2 - 15 = 0 \\
q(x, y) &= y - 3x^3 - 2x^2 + 13x - 2 = 0
\end{align*}
\]

Continue to enlarge \(M \):

| it # | form | 1 | \(x \) | \(y \) | \(x^2 \) | \(xy \) | \(y^2 \) | \(x^3 \) | \(x^2y \) | \(xy^2 \) | \(y^3 \) | \(x^4 \) | \(x^3y \) | \(x^2y^2 \) | \(xy^3 \) | \(y^4 \) | \(x^5 \) | \(x^4y \) | \(x^3y^2 \) | \(x^2y^3 \) | \(xy^4 \) | \(y^5 \) |
|------|------|-----|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|
| \(d = 3 \) | \(p \) | \(x \) | \(y \) | \(x^2 \) | \(xy \) | \(y^2 \) | \(x^3 \) | \(x^2y \) | \(xy^2 \) | \(y^3 \) | \(x^4 \) | \(x^3y \) | \(x^2y^2 \) | \(xy^3 \) | \(y^4 \) | \(x^5 \) | \(x^4y \) | \(x^3y^2 \) | \(x^2y^3 \) | \(xy^4 \) | \(y^5 \) |
| \(d = 4 \) | \(x^2 \) | \(y \) | \(x^2 \) | \(xy \) | \(y^2 \) | \(x^3 \) | \(x^2y \) | \(xy^2 \) | \(y^3 \) | \(x^4 \) | \(x^3y \) | \(x^2y^2 \) | \(xy^3 \) | \(y^4 \) | \(x^5 \) | \(x^4y \) | \(x^3y^2 \) | \(x^2y^3 \) | \(xy^4 \) | \(y^5 \) |
| \(d = 5 \) | \(x^3 \) | \(y \) | \(x^2 \) | \(xy \) | \(y^2 \) | \(x^3 \) | \(x^2y \) | \(xy^2 \) | \(y^3 \) | \(x^4 \) | \(x^3y \) | \(x^2y^2 \) | \(xy^3 \) | \(y^4 \) | \(x^5 \) | \(x^4y \) | \(x^3y^2 \) | \(x^2y^3 \) | \(xy^4 \) | \(y^5 \) |

\bullet \# rows grows faster than \# cols \(\Rightarrow \) overdetermined system

\bullet rank deficient by construction!
Null space based Root-finding

- Coefficient matrix M:

$$
M = \begin{bmatrix}
1 & 1 & \ldots & 1 \\
\end{bmatrix}
$$

- Solutions generate vectors in kernel of M:

$$
Mk = 0
$$

- Number of solutions s follows from corank
Choose s linear independent rows in K

\[S_1K \]

This corresponds to finding linear dependent columns in M

\[
\begin{bmatrix}
1 & 1 & \ldots & 1 \\
x_1 & x_2 & \ldots & x_s \\
y_1 & y_2 & \ldots & y_s \\
x_1^2 & x_2^2 & \ldots & x_s^2 \\
x_1 y_1 & x_2 y_2 & \ldots & x_s y_s \\
y_1^2 & y_2^2 & \ldots & y_s^2 \\
x_1^3 & x_2^3 & \ldots & x_s^3 \\
x_1^2 y_1 & x_2^2 y_2 & \ldots & x_s^2 y_s \\
x_1 y_1^2 & x_2 y_2^2 & \ldots & x_s y_s^2 \\
y_1^3 & y_2^3 & \ldots & y_s^3 \\
x_1^4 & x_2^4 & \ldots & x_s^4 \\
x_1^3 y_1 & x_2^3 y_2 & \ldots & x_s^3 y_s \\
x_1^2 y_1^2 & x_2^2 y_2^2 & \ldots & x_s^2 y_s^2 \\
x_1 y_1^3 & x_2 y_2^3 & \ldots & x_s y_s^3 \\
y_1^4 & y_2^4 & \ldots & y_s^4 \\
\vdots & \vdots & \vdots & \vdots
\end{bmatrix}
\]
Null space based Root-finding

Shift property in monomial basis

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
x^2 \\
x y \\
y^2 \\
\end{bmatrix}
= \begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
x^2 \\
x y \\
y^2 \\
\end{bmatrix}
\]

\[
\begin{bmatrix}
1 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
x^2 \\
x y \\
y^2 \\
\end{bmatrix}
= \begin{bmatrix}
0 & 0 & 1 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 \\
\end{bmatrix}
\begin{bmatrix}
x \\
y \\
x^2 \\
x y \\
y^2 \\
\end{bmatrix}
\]

Finding the x-roots: let \(D = \text{diag}(x_1, x_2, \ldots, x_s) \), then

\[
S_1 KD = S_2 K,
\]

where \(S_1 \) and \(S_2 \) select rows from \(K \) wrt. shift property

Reminiscent of Realization Theory
Null space based Root-finding

Nullspace of \(M \)

Find a basis for the nullspace of \(M \) using an SVD:

\[
M = \begin{bmatrix}
\times & \times & \times & \times & 0 & 0 & 0 \\
0 & \times & \times & \times & \times & 0 & 0 \\
0 & 0 & \times & \times & \times & \times & 0 \\
0 & 0 & 0 & \times & \times & \times & \times \\
\end{bmatrix} = \begin{bmatrix} X & Y \end{bmatrix} \begin{bmatrix} \Sigma_1 & 0 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} W^T \\ Z^T \end{bmatrix}
\]

Hence,

\[
MZ = 0
\]

We have

\[
S_1KD = S_2K
\]

However, \(K \) is not known, instead a basis \(Z \) is computed as

\[
ZV = K
\]

Which leads to

\[
(S_2Z)V = (S_1Z)VD
\]
Algorithm

1. Fix a monomial ordering scheme
2. Construct coefficient matrix M
3. Compute basis for nullspace of M, Z
4. Find s linear independent rows in Z
5. Choose shift function, e.g., x
6. Write down shift relation in monomial basis k for the chosen shift function using row selection matrices S_1 and S_2
7. The construction of above gives rise to a generalized eigenvalue problem
 \[(S_2 Z)V = (S_1 Z)V D \]
 of which the eigenvalues correspond to the, e.g., x-solutions of the system of polynomial equations.
8. Reconstruct canonical kernel $K = ZV$
Data-Driven root-finding

- Dual version of Kernel-based root-finding
- All operations are done on coefficient matrix M
 - Find linear dependent columns of M instead of linear independent rows of K (corank)
 - Write down eigenvalue problem in terms of partitioning of M
 - Allows sparse representation of M
 - Rank-revealing QR instead of SVD
\[
\begin{align*}
p(x, y) &= x^2 + 3y^2 - 15 = 0 \\
q(x, y) &= y - 3x^3 - 2x^2 + 13x - 2 = 0
\end{align*}
\]

Finding linear dependent columns of \(M \)

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>(x)</th>
<th>(y)</th>
<th>(x^2)</th>
<th>(xy)</th>
<th>(y^2)</th>
<th>(x^3)</th>
<th>(x^2y)</th>
<th>(xy^2)</th>
<th>(y^3)</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>(p)</td>
<td>-15</td>
<td>-15</td>
<td>1</td>
<td>3</td>
<td>1</td>
<td>3</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td>-15</td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td>-2</td>
<td>13</td>
<td>1</td>
<td>-3</td>
<td>1</td>
<td>3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(q)</td>
<td>1</td>
<td>-2</td>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x^2)</td>
<td>-2</td>
<td>13</td>
<td></td>
<td>-2</td>
<td>3</td>
<td>1</td>
<td>-3</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>(y^2)</td>
<td></td>
</tr>
<tr>
<td>(xq)</td>
<td></td>
</tr>
<tr>
<td>(yq)</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>(x^3)</td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>(y^3)</td>
<td></td>
</tr>
<tr>
<td>(xq)</td>
<td></td>
</tr>
<tr>
<td>(yq)</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>(x^3q)</td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>(y^3)</td>
<td></td>
</tr>
<tr>
<td>(xq)</td>
<td></td>
</tr>
<tr>
<td>(yq)</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>(x^3q)</td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>(y^3)</td>
<td></td>
</tr>
<tr>
<td>(xq)</td>
<td></td>
</tr>
<tr>
<td>(yq)</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>(x^3q)</td>
<td></td>
</tr>
<tr>
<td>(x)</td>
<td></td>
</tr>
<tr>
<td>(y)</td>
<td></td>
</tr>
<tr>
<td>(y^3)</td>
<td></td>
</tr>
<tr>
<td>(xq)</td>
<td></td>
</tr>
<tr>
<td>(yq)</td>
<td>-2</td>
<td></td>
</tr>
<tr>
<td>(x^3q)</td>
<td></td>
</tr>
</tbody>
</table>

...
\[
\left\{ \begin{array}{l}
p(x, y) = x^2 + 3y^2 - 15 = 0 \\
q(x, y) = y - 3x^3 - 2x^2 + 13x - 2 = 0
\end{array} \right.
\]

- Writing down the eigenvalue problem in terms of a **re-ordered** partitioning of \(M \)

- all linear dependent columns of \(M \) corresponding with monomials of the lowest possible degree are grouped in \(M_1 \)

\[
M = \begin{bmatrix}
\times & \times & \times & \times & \times & 0 & 0 & 0 \\
0 & \times & \times & \times & \times & 0 & 0 \\
0 & 0 & \times & \times & \times & \times & 0 \\
0 & 0 & 0 & \times & \times & \times & \times \\
\end{bmatrix} = [M_1 \ M_2]
\]

\[
[M_1 \ M_2] \begin{bmatrix}
K_1 \\
K_2
\end{bmatrix} = 0
\]

\[
K_2 = -M_2^\dagger \ M_1 \ K_1
\]

(\(\dagger \): Moore-Penrose pseudoinverse)
Data-driven Root-finding

\[
\begin{align*}
\begin{cases}
 p(x,y) &= x^2 + 3y^2 - 15 = 0 \\
 q(x,y) &= y - 3x^3 - 2x^2 + 13x - 2 = 0
\end{cases}
\end{align*}
\]

Writing down the eigenvalue problem in terms of a partitioning of \(M \)

\[
K_1 \begin{bmatrix}
 x_1 & 0 \\
 \vdots & x_s \\
 0 & 0
\end{bmatrix} = S_x \begin{bmatrix}
 K_1 \\
 K_2
\end{bmatrix}
\]

\[
K_1 \begin{bmatrix}
 x_1 & 0 \\
 \vdots & x_s \\
 0 & 0
\end{bmatrix} = S_x \begin{bmatrix}
 I_{tcr} \\
 -M_2^\dagger M_1
\end{bmatrix} K_1
\]
There are 3 kinds of roots:

1. Roots in zero
2. Finite nonzero roots
3. Roots at infinity

Applying Grassmann’s Dimension theorem on the Kernel allows to write the following partitioning

\[
\begin{bmatrix}
M_1 & M_2
\end{bmatrix}
\begin{bmatrix}
X_1 & 0 & X_2 \\
0 & Y_1 & Y_2
\end{bmatrix} = 0
\]

- \(X_1\) corresponds with the roots in zero (multiplicities included!)
- \(Y_1\) corresponds with the roots at infinity (multiplicities included!)
- \([X_2; Y_2]\) corresponds with the finite nonzero roots (multiplicities included!)
Roots at infinity: univariate case

\[0x^2 + x - 2 = 0 \]

transform \(x \rightarrow \frac{1}{X} \)

\[\Rightarrow X(1 - 2X) = 0 \]

- 1 affine root \(x = 2 \) \((X = \frac{1}{2}) \)
- 1 root at infinity \(x = \infty \) \((X = 0) \)

Roots at infinity: multivariate case

\[\begin{cases} (x - 2)y = 0 \\ y - 3 = 0 \end{cases} \]

transform \(x \rightarrow \frac{X}{T}, \ y \rightarrow \frac{Y}{T} \)

\[\Rightarrow \begin{cases} XY - 2YT = 0 \\ Y - 3T = 0 \end{cases} \]

- 1 affine root \((2,3,1) \) \((T = 1) \)
- 1 root at infinity \((1,0,0) \) \((T = 0) \)
General Canonical null space K

- Multiplicities of roots \rightarrow multiplicity structure of kernel K
- Partial derivatives

$$\partial_{j_1j_2\ldots j_s} \equiv \partial_{x_1^{j_1}x_2^{j_2}\ldots x_s^{j_s}} \equiv \frac{1}{j_1!j_2!\ldots j_s!} \frac{\partial^{j_1+j_2+\ldots+j_s}}{\partial x_1^{j_1}\partial x_2^{j_2}\ldots\partial x_s^{j_s}}$$

needed to describe extra columns of K
- Currently investigating technicalities
- Possibility of trading in multiplicities for extra equations (Radical Ideal)
Univariate case

\[f(x) = (x - 1)^3 = 0 \]

triple root in \(x = 1 \): \(f'(1) = 0 \) and \(f''(1) = 0 \)

\[
\begin{bmatrix}
1 & 3 & -3 & -1
\end{bmatrix}
\begin{bmatrix}
1 & 0 & 0 \\
x & 1 & 0 \\
x^2 & 2x & 1 \\
x^3 & 3x^2 & 3x
\end{bmatrix} = 0
\]

or

\[
\begin{bmatrix}
-1 & 3 & -3 & 1 \\
3 & -6 & 3 & 0 \\
-3 & 3 & 0 & 0
\end{bmatrix}
\begin{bmatrix}
1 \\
x \\
x^2 \\
x^3
\end{bmatrix} = 0
\]
Multivariate case

- **Polynomial system in 2 unknowns** (x, y) with
 - 1 affine root $z_1 = (x_1, y_1)$ with multiplicity 3:
 \[
 \begin{bmatrix}
 \partial_{00}|_{z_1} & \partial_{10}|_{z_1} & \partial_{01}|_{z_1}
 \end{bmatrix}
 \]
 - 1 root $z_2 = (x_2, y_2)$ at infinity: $\partial_{00}|_{z_2}$
 - M matrix of degree 4
Canonical Kernel K

\[
K = \begin{pmatrix}
 \partial_{00}|z_1 & \partial_{10}|z_1 & \partial_{01}|z_1 & \partial_{00}|z_2 \\
 1 & 0 & 0 & 0 \\
 x_1 & 1 & 0 & 0 \\
 y_1 & 0 & 1 & 0 \\
 x_1^2 & 2x_1 & 0 & 0 \\
 x_1y_1 & y_1 & x_1 & 0 \\
 y_1^2 & 0 & 2y_1 & 0 \\
 \vdots & \vdots & \vdots & \vdots \\
 x_1^4 & 4x_1 & 0 & 0 \\
 x_1^3y_1 & 3x_1^2y_1 & x_1^3 & 1 \\
 x_1^2y_1^2 & 2x_1y_1^2 & 2x_1^2y_1 & 0 \\
 x_1y_1^3 & y_1^3 & 3x_1y_1^2 & 0 \\
 y_1^4 & 0 & 4y_1^3 & 0
\end{pmatrix}
\]
Polynomial Optimization Problems

If

\[A_1 b = xb \]

and

\[A_2 b = yb \]

then

\[(A_1^2 + A_2^2)b = (x^2 + y^2)b. \]

(choose any polynomial objective function as an eigenvalue!)

Polynomial optimization problems with a polynomial objective function and polynomial constraints can always be written as eigenvalue problems where we search for the minimal eigenvalue!

→ ‘Convexification’ of polynomial optimization problems
Outline

1. Introduction
2. History
3. Linear Algebra
4. Multivariate Polynomials
5. Applications
6. Conclusions
System Identification: Prediction Error Methods

- **PEM System identification**
- **Measured data** \(\{u_k, y_k\}_{k=1}^N \)
- **Model structure**

\[
y_k = G(q)u_k + H(q)e_k
\]

- **Output prediction**

\[
\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k
\]

- **Model classes**: ARX, ARMAX, OE, BJ

\[
A(q)y_k = B(q)/F(q)u_k + C(q)/D(q)e_k
\]

<table>
<thead>
<tr>
<th>Class</th>
<th>Polynomials</th>
</tr>
</thead>
<tbody>
<tr>
<td>ARX</td>
<td>(A(q), B(q))</td>
</tr>
<tr>
<td>ARMAX</td>
<td>(A(q), B(q), C(q))</td>
</tr>
<tr>
<td>OE</td>
<td>(B(q), F(q))</td>
</tr>
<tr>
<td>BJ</td>
<td>(B(q), C(q), D(q), F(q))</td>
</tr>
</tbody>
</table>
Minimize the prediction errors $y - \hat{y}$, where

$$\hat{y}_k = H^{-1}(q)G(q)u_k + (1 - H^{-1})y_k,$$

subject to the model equations

Example

ARMAX identification: $G(q) = B(q)/A(q)$ and $H(q) = C(q)/A(q)$, where $A(q) = 1 + aq^{-1}$, $B(q) = bq^{-1}$, $C(q) = 1 + cq^{-1}$, $N = 5$

$$\begin{align*}
\min_{\hat{y}, a, b, c} & \quad (y_1 - \hat{y}_1)^2 + \ldots + (y_5 - \hat{y}_5)^2 \\
\text{s. t.} & \quad \hat{y}_5 - cy_4 - bu_4 - (c - a)y_4 = 0, \\
& \quad \hat{y}_4 - cy_3 - bu_3 - (c - a)y_3 = 0, \\
& \quad \hat{y}_3 - cy_2 - bu_2 - (c - a)y_2 = 0, \\
& \quad \hat{y}_2 - cy_1 - bu_1 - (c - a)y_1 = 0,
\end{align*}$$
Structured Total Least Squares

Static Linear Modeling

- Rank deficiency
- Minimization problem:

\[
\min \quad \| [\Delta A \quad \Delta b] \|_F^2 , \\
\text{s.t.} \quad (A + \Delta A)v = b + \Delta b , \\
v^T v = 1
\]

- Singular Value Decomposition:
 find \((u, \sigma, v)\) which minimizes \(\sigma^2\)
 Let \(M = [A \quad b]\)

\[
\begin{align*}
Mv &= u\sigma \\
M^Tv &= v\sigma \\
v^T u &= 1 \\
u^T u &= 1
\end{align*}
\]

Dynamical Linear Modeling

- Rank deficiency
- Minimization problem:

\[
\min \quad \| [\Delta A \quad \Delta b] \|_F^2 , \\
\text{s.t.} \quad (A + \Delta A)v = b + \Delta b , \\
v^T v = 1
\]

- Riemannian SVD:
 find \((u, \tau, v)\) which minimizes \(\tau^2\)

\[
\begin{align*}
Mv &= D_v u\tau \\
M^Tv &= D_u v\tau \\
v^T v &= 1 \\
u^T D_v u &= 1 (= v^T D_u v)
\end{align*}
\]
\begin{align*}
 \min_{v} \quad & \tau^2 = v^T M^T D_v^{-1} M v \\
 \text{s.t.} \quad & v^T v = 1.
\end{align*}

\begin{table}
\begin{tabular}{|l|c|c|c|}
\hline
method & TLS/SVD & STLS inv. it. & STLS eig \\
\hline
ν_1 & .8003 & .4922 & .8372 \\
ν_2 & -.5479 & -.7757 & .3053 \\
ν_3 & .2434 & .3948 & .4535 \\
\hline
τ^2 & 4.8438 & 3.0518 & 2.3822 \\
\hline
global solution? & no & no & yes \\
\hline
\end{tabular}
\end{table}
CpG Islands

- genomic regions that contain a high frequency of sites where a cytosine (C) base is followed by a guanine (G)
- rare because of methylation of the C base
- hence CpG islands indicate functionality

Given observed sequence of DNA:

CTCACGTGATGAGAGCATTCTCAGA
CCGTGACGCGTGTAGCAGCGGCTCA

Problem

Decide whether the observed sequence came from a CpG island
The model

- 4-dimensional state space \([m] = \{A, C, G, T\}\)
- Mixture model of 3 distributions on \([m]\)
 1: CG rich DNA
 2: CG poor DNA
 3: CG neutral DNA
- Each distribution is characterised by probabilities of observing base A, C, G or T

Table: Probabilities for each of the distributions (Durbin; Pachter & Sturmfels)

<table>
<thead>
<tr>
<th>DNA Type</th>
<th>A</th>
<th>C</th>
<th>G</th>
<th>T</th>
</tr>
</thead>
<tbody>
<tr>
<td>CG rich</td>
<td>0.15</td>
<td>0.33</td>
<td>0.36</td>
<td>0.16</td>
</tr>
<tr>
<td>CG poor</td>
<td>0.27</td>
<td>0.24</td>
<td>0.23</td>
<td>0.26</td>
</tr>
<tr>
<td>CG neutral</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
<td>0.25</td>
</tr>
</tbody>
</table>
The probabilities of observing each of the bases A to T are given by

$$
p(A) = -0.10 \theta_1 + 0.02 \theta_2 + 0.25$$
$$p(C) = +0.08 \theta_1 - 0.01 \theta_2 + 0.25$$
$$p(G) = +0.11 \theta_1 - 0.02 \theta_2 + 0.25$$
$$p(T) = -0.09 \theta_1 + 0.01 \theta_2 + 0.25$$

θ_i is probability to sample from distribution i ($\theta_1 + \theta_2 + \theta_3 = 1$)

Maximum Likelihood Estimate:

$$(\hat{\theta}_1, \hat{\theta}_2, \hat{\theta}_3) = \arg \max_{\theta} l(\theta)$$

where the log-likelihood $l(\theta)$ is given by

$$l(\theta) = 11 \log p(A) + 14 \log p(C) + 15 \log p(G) + 10 \log p(T)$$

Need to solve the following polynomial system

$$
\begin{cases}
\frac{\partial l(\theta)}{\partial \theta_1} &= \sum_{i=1}^{4} \frac{u_i}{p(i)} \frac{\partial p(i)}{\partial \theta_1} = 0 \\
\frac{\partial l(\theta)}{\partial \theta_2} &= \sum_{i=1}^{4} \frac{u_i}{p(i)} \frac{\partial p(i)}{\partial \theta_2} = 0
\end{cases}
$$
Solving the Polynomial System

- $\text{corank}(M) = 9$
- Reconstructed Kernel

$$K = \begin{bmatrix}
1 & 1 & 1 & 1 & 1 & \ldots & 1 \\
0.52 & 3.12 & -5.00 & 10.72 & \ldots & \theta_1 \\
0.22 & 3.12 & -15.01 & 71.51 & \ldots & \theta_2 \\
0.27 & 9.76 & 25.02 & 115.03 & \ldots & \theta_1^2 \\
0.11 & 9.76 & 75.08 & 766.98 & \ldots & \theta_1 \theta_2 \\
\vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots
\end{bmatrix}$$

- θ_i's are probabilities: $0 \leq \theta_i \leq 1$
- Could have introduced slack variables to impose this constraint!
- Only solution that satisfies this constraint is $\hat{\theta} = (0.52, 0.22, 0.26)$
Applications are found in

- Polynomial Optimization Problems
- Structured Total Least Squares
- Model order reduction
- Analyzing identifiability nonlinear model structures
- Robotics: kinematic problems
- Computational Biology: conformation of molecules
- Algebraic Statistics
- Signal Processing
- . . .
Outline

1. Introduction
2. History
3. Linear Algebra
4. Multivariate Polynomials
5. Applications
6. Conclusions
• Finding roots of multivariate polynomials is linear algebra and realization theory!

• Finding minimizing zero of a polynomial optimization problem is extremal eigenvalue problem

• (Numerical) linear algebra/systems theory version of results in algebraic geometry/symbolic algebra (Gröbner bases, resultants, rings, ideals, varieties, . . .)

• These relations in principle ‘convexify’/linearize many problems
 • Algebraic geometry
 • System identification (PEM)
 • Numerical linear algebra (STLS, affine EVP $Ax = x\lambda + a$, etc.)
 • Multilinear algebra (tensor least squares approximation problems)
 • Algebraic statistics (HMM, Bayesian networks, discrete probabilities)
 • Differential algebra (Glad/Ljung)

• Convexification occurs by projecting up to higher dimensional vector space (difficult in low number of dimensions; ‘easy’ in high number of dimensions: an eigenvalue problem)

• Many challenges remain:
 • Efficient construction of the eigenvalue problem - exploiting sparseness and structure
 • Algorithms to find the minimizing solution directly (inverse power method)
 • . . .
Questions?

“At the end of the day, the only thing we really understand, is linear algebra”.

Bart De Moor (1960-...)
Kim Batselier (1981-...)
Philippe Dreesen (1982-...)