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Introduction
@00

Why Linear Algebra?

System Identification: PEM

o LTI models

@ Non-convex optimization

@ Considered 'solved’ early nineties

SUBSPACE
IDENTIFICATION

FOR
'LINEAR SYSTEMS

Linear Algebra approach ke

= Subspace methods

LEUVEN 7¢I 3/56



Introduction
(o] le}

Why Linear Algebra?

Nonlinear regression, modelling and clustering

@ Most regression, modelling and clustering
problems are nonlinear when formulated in the
input data space

@ This requires nonlinear nonconvex optimization
algorithms

Linear Algebra approach Feature space

= Least Squares Support Vector Machines

Input space

@ ‘'Kernel trick’ = projection of input data to a
high-dimensional feature space

@ Regression, modelling, clustering problem
becomes a large scale linear algebra problem (set
of linear equations, eigenvalue problem)

Least @¥Squares
Suppogt Vector Machines =

s

. oo,y s,
s o Bkt B0 o o ol
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Introduction
ooe

Why Linear Algebra?

Nonlinear Polynomial Optimization

@ Polynomial object function + polynomial constraints

@ Non-convex

o Computer Algebra, Homotopy methods, Numerical
Optimization

o Considered 'solved’ by mathematics community

Linear Algebra Approach

= Linear Polynomial Algebra

QAN
ESAT T 5/56



Multi

Introduction

Research on Three Levels

Conceptual /Geometric Level

@ Polynomial system solving is an eigenvalue problem!

@ Row and Column Spaces: Ideal/Variety <+ Row space/Kernel of M,
ranks and dimensions, nullspaces and orthogonality

@ Geometrical: intersection of subspaces, angles between subspaces,
Grassmann's theorem,. ..

Numerical Linear Algebra Level

@ Eigenvalue decompositions, SVDs,. . .
@ Solving systems of equations (consistency, nb sols)
@ QR decomposition and Gram-Schmidt algorithm

Numerical Algorithms Level

@ Modified Gram-Schmidt (numerical stability), GS ‘from back to front’

@ Exploiting sparsity and Toeplitz structure (computational complexity
O(n?) vs O(n?)), FFT-like computations and convolutions,. ..

@ Power method to find smallest eigenvalue (= minimizer of polynomial
optimization problem)

KATHOLIEKE UNIVERSITEIT
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Introduction
L]

Four instances of polynomial rooting problems

p(N) = det(A — AI) = 0

0005
of

0005

0010

0015

“0.020

z2 +3y%2 —15
y—3z3 —222 + 13z — 2

min
z,y

s. t.

ZZ +y2

y—x2+2x—1:0
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History
L]

Solving Polynomial Systems: a long and rich histol

DIOPHANTI ” g 5

ALEX ANDRINI - —_— ®H ®
ARITHMETICORVM 4 3 BlcRE Rz
T : hon®

¥
e NS
LT ranglon, Je
e wr -
©rH PRIPILECIO A3GIS. 2+
’ oy >
Diophantus Al-Khwarizmi Zhu Shijie (c1260-c1320) Jade
(c200-c284) (c780-c850) Mirror of the Four Unknowns
Arithmetica

A

Pierre de Fermat René Descartes Isaac Newton Gottfried
(c1601-1665) (1596-1650) (1643-1727) Wilhelm Leibniz
(1646-1716)
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History

[ ]
...leading to “Algebraic Geometry”

Etienne Bézout Jean-Victor August Ferdinand Evariste Galois Arthur Cayley
(1730-1783) Poncelet Mébius (1790-1868) (1811-1832) (1821-1895)
(1788-1867)

Leopold Kronecker  Edmond Laguerre James Joseph Francis Sowerby David Hilbert

(1823-1891) (1834-1886) Sylvester Macaulay (1862-1943)
(1814-1897) (1862-1937)

LEUVEN A
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History
[ 1]

So Far: Emphasis on Symbolic Methods

Computational Algebraic Geometry

@ Emphasis on symbolic manipulations
@ Computer algebra
@ Huge body of literature in Algebraic Geometry

@ Computational tools: Grobner Bases (next slide)

David A. Cox

John Little

Donal O'shea
Using Algebraic
Geometry

N
e 7 2\

Wolfgang Grdbner rBruno Buchberger
(1899-1980)
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History
o] J

So Far: Emphasis on Symbolic Methods

Example: Grobner basis

Input system: .

|
o

x2y+4:cy—5y+3

$2+4my+8y—4x—10 =

o

@ Generates simpler but equivalent system (same roots)
@ Symbolic eliminations and reductions
@ Monomial ordering (e.g., lexicographic)

@ Exponential complexity

@ Numerical issues! Coefficients become very large

Grobner Basis:

BT 5 o

—9 — 126y + 647y> — 624y° + 144y* =

o

F=9-t26y+ 64724y + 133y =0

—1005 + 6109y — 6432y> + 1584y> + 228z = 0 R 4

KATHOLIEKE UNIVERSITEIT
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Linear Algebra

Outline

© Linear Algebra
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Linear Algebra

[ o]
Homogeneous Linear Equations
pxq  gx(g—r) px(g—r)

e C(AT) L O(X)
o rank(A) =r
e dim N(A) = g —r =rank(X)

TR EHI 2

U, James Joseph Sylvester

X =1

0 *ML
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Linear Algebra
oe

Homogeneous Linear Equations

A X = 0

pxq  gx(q—r) px(g—r)
Reorder columns of A and partition

PXq pX(g—r) pxr

A =[4 4] rank(As) =r (A full column rank)

Reorder rows of X and partition accordingly

g-r rank(4s) = r

=]
1
I
(@n)
=

r rank(X7)

I
2
|
<
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Linear Algebra
L]

Dependent and Independent Variables

q—r
— . I[xX]
A A it =0
& w3
e X;: independent variables
@ X5: dependent variables
X, = -ALTAX
A = A XX !

@ Number of different ways of choosing r linearly independent
columns out of ¢ columns (upper bound):

(W5) =

M eo
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Linear Algebra
[ 1]

Grassmann's Dimension Theorem

A X = 0 B Y = 0
and
pXq qx(q—ry) pX(g—"4) pxt tx(t—rp) pX(t—rp)

What is the nullspace of [A B]?

q—ry t—rp ?

aafi 8] -
Let rank([A B]) =rap

(q—ra)+(t—rp)+?=@+t)—rap = ?=ra+trp—7aB

0 IFCQ
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Linear Algebra
o] ]

Grassmann's Dimension Theorem

a—TA t—=rp TAtTB—TAB
X 0 7 _
[A B][ 0 v 7 } = 0

Intersection between column space of A and B:

AZy = —-BZ,

TAB

ra

B Hermann Grassmann

— TA+7TB—TAB

#(AUB)=#A+#B — #(ANB)

Avaval %@Q
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Linear Algebra
[ le]

Univariate Polynomials and Linear Algebra

@ Characteristic Polynomial
The eigenvalues of A are the roots of

p(A) =det(A—AI)=0

@ Companion Matrix
Solving

qx) =723 —22° — 52 +1=0
leads to
0 1 0 1
0 0 1 r | =x
-1/7 5/7 2/7 x2

M eo
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Linear Algebra
o] ]

Univariate Polynomials and Linear Algebra

Consider the univariate equation
3 2 _
z° + a1z + asx +az =0,

having three distinct roots x1, x2 and x3

@ Homogeneous
linear system

1 1 1 @ Rectangular
as as a; 1 0 0 oL &2 &3 Vandermonde
0 as a2 a1 1 0 L2 T 0 e corank =3

Ty T2 I3
0 0 a3 a2 a1 1 T @ Observability
] x5} matrix-like

@ Realization
theory!

LEUVEN A
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Linear Algebra
[ leJele]

Two Univariate Polynomials

Consider

x° +a1$2 +a2x +as =

2
r“+bix+by =
Build the Sylvester Matrix:
1 a1 a2 a3 0 1 Row Space Null Space
0 1 al ag as x Ideal N
1 by bo 0 0 z2 =0 =union of ideals \:/?r:::ee?;ection of null
0 1 by bo 0 z3 =multiply rows with pow- P—
0 0 1 by b ot ersof G

@ Corank of Sylvester matrix = number of common zeros

@ null space = intersection of null spaces of two Sylvester

matrices

@ common roots follow from realization theory in null space

@ notice 'double’ Toeplitz-structure of Sylvester matrix

KATHOLIEKE UNIVERSITEIT

LEU
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Linear Algebra
[e] Tele]

Two Univariate Polynomials

o Sylvester Resultant
Consider two polynomials f(z) and g(x):

flz) =2 —622 + 11z — 6 = (x — 1)(z — 2)(x — 3)
g(x) = —2® + 5z — 6 = —(z — 2)(x — 3)

Common roots iff S(f,g) =0

-6 11 —6 1 0
0 -6 11 —6 1
S(f,g)=det | -6 5 =1 0
0 -6 5 -1
0 0 -6 5 -1

—_

Jaes Joseph Sylvester

o O

0 y;e&
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Linear Algebra
[e]e] o]

Two Univariate Polynomials

The corank of the Sylvester matrix is 2!

Sylvester's construction can be understood from

1z 22 2 2t
f(z) =0 6 11 -6 1 0 11
x-f(x)=0 -6 11 -6 1 T1 T2
g(z)=0 -6 5 -1 3 23| =0
z-g(x)=0 -6 5 -1 3 a3
22 g(z) =0 -6 5 -1 i

where x1 = 2 and z9 = 3 are the common roots of f and g

0 IFCQ
ESAT i 23 /56




Linear Algebra
[e]e]e] ]
Two Univariate Polynomials

The vectors in the canonical kernel K obey a ‘shift structure’:

The canonical kernel K is not available directly, instead we
compute Z, for which ZV = K. We now have

S1KD = SK
S1ZVD = SZV

leading to the generalized eigenvalue problem

(S22)V = (S12)VD

M eo
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Multivariate Polynomials

Outline

o Multivariate Polynomials
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Multivariate Polynomials
000000

Null space based Root-finding

@ Consider
20 |
plz,y) = 22432 -15=0 !
q(z,y) = y—323-222+13x—-2=0 / \\\ !
’// v\\\w |
i \ !
@ Fix a monomial order, e.g., 1 <z <y < 2 < zy < / \\ /
Y <ol <2y <., — T
32 1 O\ gy 3
»/ \\///
@ Construct M: write the system in matrix-vector |
notation: : o
1 T Y 22 zy y? 2® 22y xy? P
p(zy)  [-15 1 3
q(z,y) -2 13 1 =2 -3
z-p(x,y) -15 1 3
y - p(z,y) —15 1 3
26 /56
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Multivariate Polynomials
(o] lelelele]e]

Null space based Root-finding

z? +3y2 -15=0
y—323 —222 4132 -2=0

{ p(z,y)

q(z,y)

Continue to enlarge M:

it # |f0rm|| 1| x y| 22 xy y2| 23 22y 2y? o3| atadya2y?ayByd] 2O52tyady222ySayt y5| 7

|

d=3 TP
yp

=)

8
>

8

8
€ e N8 < 8
W Ne ke B NS

R 20 TVTW WV AITTY

& 8 8
(S

H

@ # rows grows faster than # cols = overdetermined system

@ rank deficient by construction!

LEUVEN [V -



Multivariate Polynomials
[e]e] lelele]e]

Null space based Root-finding

Canonical nullspace K built

@ Coefficient matrix M: from s solutions (s, ys ):
X X% 0 0 0 _ i}
_ |0 xIx x o 0 1 1 1
M= 0 0 X X X 0
0 0 0 x X X x X9 Ts
. . Y1 Y2 cee Ys
@ Solutions generate vectors in kernel of M: 5 5 5
1 o Ts
MEkE =0 T1Y1 | X2Y2 | ... | TsYs
2 2 2
. Y1 Y5 “en Ys
@ Number of solutions s follows from corank 3 a3 | ... ] 2B
2 2 2
TiY1 ToY2 Ts5Ys
w1yl | woy3 | ... | wsy?
3 3 3
Y1 Yo ce . Ys
x4 T x4
z3y1 | zdy2 | ... | @3ys
2,2 | 22,2 2,2
1Yy | 2Y2 | --- | Z5Ys
Ely? CEQyS e xsyg
4 4 4
Yy Yo “e Ys

LEUVEN 7¢I 28/56



Multivariate Polynomials

0008000

Null space based Root-finding

@ Choose s linear independent rows in K
S1K

@ This corresponds to finding linear
dependent columns in M

LEUVEN A

1 1 1
1 T2 Ts
Y1 Y2 Ys
1Yl | T2Y2 ZsYs

2 2 2
Y1 Y2 Ys
af | a3 3
z?y1 | 232 z2ys

2 2 2
1Yy z2Ys TslYg

3 3 3
Yi Y2 Ys
af | 23 j
aiyr | 232 z3ys
2.2 2.2 2.2
T1Y1 | TY3 TsYs
193 | @203 zsy3

4 4 4
Yi Yo Ys

29 /56



Multivariate Polynomials

[e]o]e]e] lelelele

Shift property in monomial basis

A -
100 0 0 O z 01 00 0 0 x
01 00 0 0 meZOOOIOO xyz
00 1 0 0 0 00 0 0 1 0

Yy Yy

L 2 | L 2 |

- - -
10 0 0 0 0 z 001 00 0 z
01 00 0 0 jgy:oooo10 ;’2
00 1 0 0 0 00 00 0 1

zy zy

L »? ] L y? |

@ Finding the z-roots: let D = diag(z1, z2,...,xs), then
SiKD = S,K,

where S7 and Sy select rows from K wrt. shift property
@ Reminiscent of Realization Theory

LEUVEN A 30,56



Multivariate Polynomials
00000e0

Null space based Root-finding

Nullspace of M
Find a basis for the nullspace of M using an SVD:

X X X 0 0 0
10 x x X7 0 o _ ;1 0 wT
M= 18 "o X x X1 0 =[x Y][o OHZT]
0 0 0 x X X
Hence,
MZ =0
We have
S1KD = 5K

However, K is not known, instead a basis Z is computed as

ZV =K

Which leads to
(S.Z2)V = (51Z2)VD

0 IPCEL
ESAT i 31/56




Multivariate Pol

O00000e00

Null space based Root-finding

Algorithm

Fix a monomial ordering scheme

Construct coefficient matrix M
Compute basis for nullspace of M, Z
Find s linear independent rows in Z

Choose shift function, e.g., =

S o A W NN

Write down shift relation in monomial basis & for the chosen shift
function using row selection matrices S7 and S5

7 The construction of above gives rise to a generalized eigenvalue
problem
(S22)V = (5:2)VD
of which the eigenvalues correspond to the, e.g., z-solutions of the
system of polynomial equations.

8 Reconstruct canonical kernel K = ZV

KATHOLIEKE UNIVERSITEIT
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Multivariate Polynomials
[ leJele]

Data-driven Root-finding

Data-Driven root-finding

@ Dual version of Kernel-based root-finding
@ All operations are done on coefficient matrix M

e Find linear dependent columns of M instead of linear
independent rows of K (corank)

e Write down eigenvalue problem in terms of partitiong of M
e Allows sparse representation of M

e Rank-revealing QR instead of SVD

LEUVEN 7¢I 33/56



Multivariate Polynomials

0@00

Data-driven Root-finding

p(r,y) = 22+3y2—-15=0
q(z,y) = y—323-2224+13x-2=0

Finding linear dependent columns of M

L1 =
pl| — 15|

zp| — 15
yp|
qd|l —2 13
22|

zyp|

ygp

zq =9
Y4

25|

zzgp

Iysp

y_p|

22|

zydq|

ygq

KATHOLIEKE UNIVERSITEIT
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Multivariate Polynomials
[e]e] o]

Data-driven Root-finding

p(z,y) = 22+3y2—-15=0
q(z,y) y—323 —222 + 13z —2=0

@ Writing down the eigenvalue problem in terms of a re-ordered
partitioning of M

@ all linear dependent columns of M corresponding with monomials of
the lowest possible degree are grouped in M;

= [M;y M)

X X oo
X ooo

(T: Moore-Penrose pseudoinverse)

LEUVEN A
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Data-driven Root-finding

q(z,y) =

{ p(zy) =

Writing down the eigenvalue

Z1
K,
0
T
K
0

KATHOLIEKE UNIVERSITEIT

LEUVEN

M eo

Multivariate Polynomials
[efe]e] ]

22 +3y2 —-15=0
y—3x3 —222 + 132 —2=0

problem in terms of a partitioning of M

! K
_ 1
-5 5
Ts
0 1
_ ter
% { — MM, ] o
Ts

36 /56



Multivariate Polynomials

Complications

There are 3 kinds of roots:
@ Roots in zero
@® Finite nonzero roots
© Roots at infinity
Applying Grassmann's Dimension theorem on the Kernel allows to

write the following partitioning
X1 0 Xy
My M. =0
M 34 { 0 Y Y }
@ X, corresponds with the roots in zero (multiplicities included!)
@ Y7 corresponds with the roots at infinity (multiplicities included!)

@ [X5;Y5] corresponds with the finite nonzero roots (multiplicities
included!)

LEUVEN A o



Multivariate Polynomials
o] ]

Complications

Roots at infinity: univariate case

0z +2—2=0

transform z — %
= X(1-2X)=0
@ 1 affine root x =2 (X = %)

@ 1 root at infinity x = oo (X = 0)

Roots at infinity: multivariate case

(z=2)y = 0
y—3 = 0
transformxe%,ya%
N XYy -2YT = 0
Y-3T = 0

@ 1 affine root (2,3,1) (T'=1)
@ 1 root at infinity (1,0,0) (7" = 0)

LEUVEN A
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Multivariate Polynomials

[ Jo]ele]

Multiplicities

General Canonical null space K

e Multiplicities of roots — multiplicity structure of kernel K

@ Partial derivatives

31]2~-~]s J1,.J2 Js o (o B E
T" X" ... Ts ]1']2']8'81{18,%%2 8-/13.3

needed to describe extra columns of K

@ Currently investigating technicalities

@ Possibility of trading in multiplicities for extra equations
(Radical Ideal)

LEUVEN 7¢I 39/56



f@)=(@@-1)°=0
triple root inz =1: f/(1) =0 and f"(1) =0

1 0 0
fl13 -3 -1]|5% 1

72
3 322 3z

or
of T-1 3 -3 1 i
af | 3 -6 30| |5 =0
of [ -3 3 00 |5

0 l,;cg
ESAT i 40 /56



Multivariate Polynomials
[e]e] o]

Multiplicities

Multivariate case

@ Polynomial system in 2 unknowns (z,y) with

e 1 affine root z; = (z1,y1) with multiplicity 3:
[800|z1 610|Z1 a01|Zl]

o 1 root z5 = (z2,y2) at infinity: 9oz,

e M matrix of degree 4

LEUVEN A 41756



KATHOLIEKE UNIVERSITEIT

LEUVEN IR =S

00021
1

I

Y1
2
Ty

1y

x?yl

r1y;

xly%
Y1

810|z1
0
1
0
2$1

Y1
0

414
3$%y1
27191

cCoo RO -
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Polynomial Optimization

Polynomial Optimization Problems

If

Aib=xb
and

Agb = yb
then

(A2 + ADb = (2 + y*)b.
(choose any polynomial objective function as an eigenvaluel!)
Polynomial optimization problems with a polynomial objective function

and polynomial constraints can always be written as eigenvalue problems
where we search for the minimal eigenvalue!

— 'Convexification’ of polynomial optimization problems

KATHOLIEKE UNIVERSITEIT
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Applications

Outline

e Applications
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Applications
[ le]

System Identification: Prediction Error Methods

@ PEM System identification

Measured data {uy, yk}szl

@ Model structure

yr = G(q)ur + H(q)ex

@ Output prediction Class Polynomials
ARX A(q), B(q)
g = H Y (q)G(q)ur + (1 — H M)yy, ARMAX égqg, B(q),
q
: OE B(q), F(q)
@ Model classes: ARX, ARMAX, OE, BJ B Bla) Ol
D(q), F(q)

A(Q)yx = B(q)/F(q)ur+C(q)/D(q)ex

0 IFCQ
ESAT i 45 / 56



Applications
o] ]

System Identification: Prediction Error Methods

@ Minimize the prediction errors y — g, where
gk = H " (9)G(q)ur + (1 — H "y,

subject to the model equations

@ Example

ARMAX identification: G(q) = B(q)/A(q) and H(q) = C(q)/A(q), where
Alq)=1+aq™ ', B(q)=bg", Clq) =14cqg ', N=5

@rgi?c (1 —91) + ...+ (5 — 95)°
s. t. U5 — cfa — bug — (c — a)yas = 0,
Ja — ¢z — bug — (c — a)ys = 0,
93 — 2 — buz — (¢ — a)y2 = 0,
92 — ci1 — bur — (¢ — a)y1 = 0,

LEUVEN 7¢I 46 /56



Applications
[ le]

Structured Total Least Squares

Static Linear Modeling Dynamical Linear Modeling

.

@ Rank defici
@ Rank deficiency DS RIS
L @ minimization problem:
@ minimization problem:
i AA Ab)||2
min H[AA Ab]Hiﬂ Tom [l ]HF’
. t. A+ AA)v = b+ Ab,
5. t. (A+ AA)v = b+ Ab, S (A - Ao = Bt
T Ty =1
vio=1
[AA  Ab] structured
@ Singular Value Decomposition:
find (u, o, v) which minimizes o2 @ Riemannian SVD:
Let M =[A b] find (w, 7, v) which minimizes 72
Mv = uo Mv = Dyut
MTu = wo MTu = Dyvr
vTy E 1 vTo = 1
wTu = 1 uwI'Dyu = 1(=vTDyv)

LEUVEN IR 47 /56



Applications

o] ]
Structured Total Least Squares

.

X
: @ vt cost ncion I

PSP p——

: 2 TarsT Hy—1 LSSV son

min T =v" M*"D *Muv A s

v STUSRiSVD/invitsoln
v STUSIRISVDIEIG global mi

15[ X STLSIRISVDIEIG extrema

theta

method TLS/SVD STLS inv. it. STLS eig
v .8003 4922 .8372
vo -.5479 -.7757 .3053
v3 .2434 .3948 .4535
T2 4.8438 3.0518 2.3822
global solution? no no yes

LEUVEN A a5/56



Applications
[ leJe]e]

Maximum Likelihood Estimation

CpG Islands

@ genomic regions that contain a high frequency of sites where a
cytosine (C) base is followed by a guanine (G)

@ rare because of methylation of the C base

@ hence CpG islands indicate functionality

Given observed sequence of DNA:

CTCACGTGATGAGAGCATTCTCAGA
CCGTGACGCGTGTAGCAGCGGCTCA

Decide whether the observed sequence came from a CpG island

vaval
ESAT T 49/56



Applications
[e] Te]e]

Maximum Likelihood Estimation

The model

@ 4-dimensional state space [m| = {A,C,G, T}
@ Mixture model of 3 distributions on [m)]

@ : CGrich DNA
@® : CG poor DNA
® : CG neutral DNA

@ Each distribution is characterised by probabilities of observing
base A,C,Gor T

Table: Probabilities for each of the distributions (burbin; Pachter & Sturmfels)

DNA Type | A C G T
CG rich 0.15 |1 0.33 ] 0.36 | 0.16
CG poor | 0.27 | 0.24 | 0.23 | 0.26

CG neutral | 0.25 | 0.25 | 0.25 | 0.25

0 IPCEL
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Applications
[e]e] o]

Maximum Likelihood Estimation

@ The probabilities of observing each of the bases A to T are given by

p(A) = —0.100; +0.020> +0.25
p(C) = +0.086; —0.016;+0.25
p(G) = +0.116; —0.0262 +0.25
p(T) = —0.0961 +0.016 +0.25

@ 0; is probability to sample from distribution i (61 + 02 + 65 = 1)

@ Maximum Likelihood Estimate:
(61,02,05) = arg max 1(9)
where the log-likelihood [(6) is given by
1(0) = 111logp(A) + 141logp(C) + 151ogp(G) + 10logp(T)

@ Need to solve the following polynomial system

oue) 4 i Op(i)  _

061 - Zi:l plzz) 901 =0
al(h) _ 4 u; Op(i) _

002 - Zi:l p() 617(92 - 0

KATHOLIEKE UNIVERSITEIT
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Applications
000000080

aximum Likelihood Estimation

Solving the Polynomial System

@ corank(M) =9

@ Reconstructed Kernel

11 1 1. 1
052 312 —500 1072 ... | 6
022 312 —1501 7151 ... | 6,
K=1027 976 2502 11503 ... | 63
011 9.76 75.08 766.98 ... | 616,

@ 0;'s are probabilities: 0 < 6; <1
@ Could have introduced slack variables to impose this constraint!

@ Only solution that satisfies this constraint is 6 = (0.52,0.22, 0.26)

0 l,;w
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Multi ) Applications

And Many More

Applications are found in

@ Polynomial Optimization Problems
@ Structured Total Least Squares

@ Model order reduction

Analyzing identifiability nonlinear model structures
@ Robotics: kinematic problems

e Computational Biology: conformation of molecules
@ Algebraic Statistics

@ Signal Processing

Wb
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@ Conclusions
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Applications Conclusions

Conclusions

@ Finding roots of multivariate polynomials is linear algebra and realization theory!

@ Finding minimizing zero of a polynomial optimization problem is extremal
eigenvalue problem

@ (Numerical) linear algebra/systems theory version of results in algebraic
geometry/symbolic algebra (Grobner bases, resultants, rings, ideals,
varieties,. . .)

@ These relations in principle ‘convexify’/linearize many problems

@ Algebraic geometry

System identification (PEM)

Numerical linear algebra (STLS, affine EVP Az = z\ + q, etc.)
Multilinear algebra (tensor least squares approximation problems)
Algebraic statistics (HMM, Bayesian networks, discrete probabilities)
@ Differential algebra (Glad/Ljung)

@ Convexification occurs by projecting up to higher dimensional vector space
(difficult in low number of dimensions; ‘easy’ in high number of dimensions: an
eigenvalue problem)

@ Many challenges remain:
@ Efficient construction of the eigenvalue problem - exploiting sparseness
and structure
@ Algorithms to find the minimizing solution directly (inverse power method)
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Questions?

Bart De Moor Kim Batselier Philippe Dreesen
(1960-...) (1981-...) (1982-...)

“At the end of the day,
the only thing we really understand,
is linear algebra”.
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