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Claude E. Shannon (1916-2001)

Shannon – Founder of the Information Age

From: [IEEE Information Theory Society]

Today’s ‘‘digital world’’ is based on his theoretical work!
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Analog World Versus Digital World

?

Analog world Digital world
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Moore’s Law

Moore’s Law
The complexity of electronic circuits, measured in the number of
transistors on a chip, doubles approximately every two years.

• It was postulated in 1965 by Gordon Moore.
• Based on the development between 1959
and 1965, he originally stated a doubling
every year. (Corrected in 1975 to the current
two year statement.)

• This remarkable progress in technology could
be observed over the last 50 years.

• The miniaturization cannot be continued
forever due to physical limitations.

From: G. Moore, ‘‘Cramming More Components onto
Integrated Circuits,’’ Electronics Magazine, 38, 1965.
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Richard Feynman

‘‘Richard Feynman was one of the 20th century’s most influential
physicists . . . ’’ [The Observer, Sunday 15 May 2011]

He discusses the problem of transmitting a
function of time and writes in this context:

‘‘Consideration of such a problem will bring
us on to consider the famous Sampling
Theorem, another baby of Claude
Shannon.’’

R. P. Feynman, Feynman Lectures on Computation, A. J. Hey and R. W. Allen, Eds.
Penguin Books, 1999.
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Whittaker-Kotel’nikov-Shannon Sampling Series

Edmund T. Whittaker Vladimir A. Kotel’nikov Claude E. Shannon

Herbert Raabe

∞∑
k=−∞ f(k)

sin(π(t− k))
π(t− k)

Kinnosuke Ogura
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In this talk we present our recent research results on this topic.
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Signal Reconstruction

We analyze the local and global convergence behavior of the sampling
series ∞∑

k=−∞ f(tk)φk(t).
for the Paley-Wiener space PW1

π.
• φk, k ∈ Z, are certain reconstruction functions
• {tk}k∈Z is the sequence of real sampling points

We assume that t0 = 0, and

. . . < t−N < . . . < t−1 < t0 < t1 < . . . < tN < . . . .

• The sampling points {tk}k∈Z are the zeros of sine-type functions.
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Signal Spaces

• Bσ is the set of all entire functions f with the property that for all ε > 0
there exists a constant C(ε) with |f(z)| 6 C(ε) exp

(
(σ+ ε)|z|

)
for all

z ∈ C.

Definition (Bernstein Space)
The Bernstein space B

p
σ consists of all signals in Bσ, whose restriction to

the real line is in Lp(R), 1 6 p 6∞.
B∞σ,0 denotes the set of all signals in f ∈ B∞σ that satisfy lim|t|→∞ f(t) = 0.
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Signal Spaces

Definition (Paley-Wiener Space)
For 1 6 p 6∞ we denote by PWp

σ the Paley-Wiener space of functions f
with a representation f(z) = 1

2π

∫σ
−σ g(ω) eizω dω, z ∈ C, for some

g ∈ Lp[−σ,σ].

The norm for PWp
σ is given by ‖f‖PWp

σ
=
(

1
2π

∫σ
−σ |f̂(ω)|p dω

)1/p
.

• We focus on PW1
π.

• PWp
π ⊃ PWs

π for 1 6 p < s 6∞; ‖f‖∞ 6 ‖f‖PW1
π
.

• PW2
π is the space of bandlimited function with finite energy.
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Operational Meaning of Signal Spaces
PW1

π and the convergence of wide-sense stationary (WSS) stochastic processes X

• Mean-square error: E

∣∣∣∣∣X(t) −
N∑

k=−N

X(tk)φk(t)

∣∣∣∣∣
2

Let T > 0. We have

lim
N→∞ max

t∈[−T ,T ]

∣∣∣∣∣f(t) −
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣ = 0

for all f ∈ PW1
π, if and only if

lim
N→∞ max

t∈[−T ,T ]
E

∣∣∣∣∣X(t) −
N∑

k=−N

X(tk)φk(t)

∣∣∣∣∣
2

= 0

for an important subclass bandlimited wide-sense stationary processes
(I-processes).

H. Boche and U. J. Mönich, ‘‘Global and local approximation behavior of reconstruction processes
for Paley-Wiener functions,’’ Sampling Theory in Signal and Image Processing, vol. 8, no. 1, pp.
23–51, Jan. 2009

Foundation of Digital Signal Processing: Signal Spaces, System Representation, and Quantization Effects Holger Boche 14



Sine-Type Functions

Definition
An entire function f of exponential type π is said to be of sine type if

(i) the zeros of f are separated, and

(ii) there exist positive constants A, B, and H such that

A eπ|y| 6 |f(x+ iy)| 6 B eπ|y|

whenever x and y are real and |y| > H.

Example
sin(πz) is a function of sine type and its zeros are tk = k, k ∈ Z.
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Zeros of Sine Type Functions and
Complete Interpolating Sequences

Definition (Complete Interpolating Sequence)

We say that {tk}k∈Z is a complete interpolating sequence for PW2
π and

coefficient space l2 if the interpolation problem f(tk) = ck, k ∈ Z, has
exactly one solution f ∈ PW2

π for every sequence {ck}k∈Z ∈ l2.

Lemma

If {tk}k∈Z is the set of zeros of a function of sine type, then the system
{eiωtk }k∈Z is a Riesz basis for L2[−π,π], and {tk}k∈Z is a complete
interpolating sequence for PW2

π.

Foundation of Digital Signal Processing: Signal Spaces, System Representation, and Quantization Effects Holger Boche 16



Construction of Sampling Patterns

• real-valued signal g ∈ PW1
π, ‖g‖PW1

π
< 1

⇒ φg(t) = g(t) − cos(πt) is a function of sine type.
• The zeros {tk}k∈Z of φg are all real, because we assumed that g is
real-valued and ‖g‖PW1

π
< 1.

→ method to construct arbitrarily many sampling patterns {tk}k∈Z.

g(t) = 0.9 sin(0.2·πt−1)
0.2·πt−1

cos(πt)

φg(t)

1
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Reconstruction Functions

If {tk}k∈Z are the zeros of a function of sine type, then the product

φ(z) = z lim
N→∞

∏
|k|6N
k6=0

(1− z/tk)

converges uniformly on |z| 6 R for all R <∞ and φ is an entire function of
exponential type π.

φk(t) =
φ(t)

φ ′(tk)(t− tk)

is the unique function in PW2
π that solves the interpolation problem

φk(tl) =

{
1 l = k

0 l 6= k

and {φk}k∈Z is a Riesz basis for PW2
π.
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Local Uniform Convergence

Theorem
Let φ be a function of sine type, whose zeros {tk}k∈Z are all real. Then we
have

lim
N→∞ max

t∈[−T ,T ]

∣∣∣∣∣f(t) −
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣ = 0

for all T > 0 and all f ∈ PW1
π.

• The sampling series is locally uniformly convergent.

Remark
• The same result holds even for f ∈ B∞π,0.

H. Boche and U. J. Mönich, ‘‘Convergence behavior of non-equidistant sampling series,’’ Signal
Processing, vol. 90, no. 1, pp. 145–156, Jan. 2010

U. J. Mönich and H. Boche, ‘‘Non-equidistant sampling for bounded bandlimited signals,’’ Signal
Processing, vol. 90, no. 7, pp. 2212–2218, Jul. 2010
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Brown’s Theorem

Theorem (Brown)

For all f ∈ PW1
π and T > 0 fixed we have

lim
N→∞ max

t∈[−T ,T ]

∣∣∣∣∣f(t) −
N∑

k=−N

f(k)
sin(π(t− k))
π(t− k)

∣∣∣∣∣ = 0.

The Shannon sampling series is uniformly convergent on all compact
subsets of R for the space PW1

π.
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Global Uniform Convergence

Theorem
Let φ be a function of sine type, whose zeros {tk}k∈Z are all real. Then, for
all 0 < β < 1 and all f ∈ PW1

βπ, we have

lim
N→∞max

t∈R

∣∣∣∣∣f(t) −
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣ = 0.

• If oversampling is used the sampling series is globally uniformly
convergent.

H. Boche and U. J. Mönich, ‘‘Convergence behavior of non-equidistant sampling series,’’ Signal
Processing, vol. 90, no. 1, pp. 145–156, Jan. 2010
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Local Convergence with Oversampling

• For B∞βπ, 0 < β < 1, we have local uniform convergence.

Theorem
Let φ be a function of sine type, whose zeros {tk}k∈Z are all real. Then, for
all T > 0, 0 < β < 1, and all f ∈ B∞βπ, we have

lim
N→∞ max

t∈[−T ,T ]

∣∣∣∣∣f(t) −
N∑

k=−N

f(tk)φk(t)

∣∣∣∣∣ = 0.

U. J. Mönich and H. Boche, ‘‘Non-equidistant sampling for bounded bandlimited signals,’’ Signal
Processing, vol. 90, no. 7, pp. 2212–2218, Jul. 2010
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Conjecture 1.1

Conjecture (Local Convergence Behavior for Complete
Interpolating Sequences)

There exist a complete interpolating sequence {t1k}k∈Z, f1 ∈ PW1
π, and

t1 ∈ R, such that

lim sup
N→∞

∣∣∣∣∣f1(t1) −
N∑

k=−N

f1(tk)φ
1
k(t1)

∣∣∣∣∣ =∞.

Remark
If this conjecture is true, it shows that the zero sequences of sine-type
functions have very nice properties.
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Zeros of Sine Type Functions and
Complete Interpolating Sequences

Theorem (Avdonin and Joó)
If {tk}k∈Z ⊂ R is a complete interpolating sequence then there exists
d ∈ (0, 1/4) and a sine-type function with zeros {µk}k∈Z such that

d(tk−1 − tk) 6 µk − tk 6 d(tk+1 − tk)

for all k ∈ Z.
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Global Convergence Behavior without Oversampling

• Two positive results for PW1
π:

1) local uniform convergence when no oversampling is used,
2) global uniform convergence when oversampling is used.

• Global convergence behavior without oversampling?

• Recent result: For PW1
π and a large class of reconstruction processes

a globally bounded signal reconstruction is impossible if the samples
are taken equidistantly at Nyquist rate.

• Non-equidistant sampling→ additional degree of freedom, which may
help to improve the convergence behavior.
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A Subclass of the Functions of Sine Type

Definition
By S we denote the set of all entire functions φ with separated real zeros
{tk}k∈Z that have a representation as Fourier-Stieltjes integral in the form

φ(t) =
1
2π

∫π
−π

eiωt dµ(ω),

where µ(ω) is a real function of bounded variation on the interval [−π,π]
and has a jump discontinuity at each endpoint.

• S is a subclass of the functions of sine type.
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Global Convergence Behavior without Oversampling

Theorem
Let φ be a function of sine type in S, whose zeros {tk}k∈Z are all real. Then
there exists a signal f1 ∈ PW1

π such that

lim sup
N→∞ max

t∈R

∣∣∣∣∣f1(t) −
N∑

k=−N

f1(tk)φk(t)

∣∣∣∣∣ =∞.

H. Boche and U. J. Mönich, ‘‘Towards a general theory of reconstruction of bandlimited signals from
sine wave crossings,’’ Signal Processing, vol. 92, no. 3, pp. 737–751, Mar. 2012
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Global Convergence Behavior of the Shannon
Sampling Series without Oversampling

A special case of the previous theorem concerns the global convergence
behavior of the Shannon sampling series:

Corollary

There exists a signal f1 ∈ PW1
π such that

lim sup
N→∞ max

t∈R

∣∣∣∣∣f1(t) −
N∑

k=−N

f1(k)
sin(π(t− k))
π(t− k)

∣∣∣∣∣ =∞.

H. Boche and U. J. Mönich, ‘‘There exists no globally uniformly convergent reconstruction for the

Paley-Wiener space PW1
π of bandlimited functions sampled at Nyquist rate,’’ IEEE Transactions on

Signal Processing, vol. 56, no. 7, pp. 3170–3179, Jul. 2008
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Conjecture 1.2

Conjecture (Global Convergence Behavior for Complete
Interpolating Sequences)

For each complete interpolating sequences {tk}k∈Z there exists a f1 ∈ PW1
π

such that

lim sup
N→∞

(
sup
t∈R

∣∣∣∣∣f1(t) −
N∑

k=−N

f1(tk)φk(t)

∣∣∣∣∣
)

=∞.
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I-Processes

Definition
We call a bandlimited wide-sense stationary process X I-process if its
correlation function RX has the representation

RX(τ) =
1
2π

∫π
−π

SX(ω) eiωτ dω,

for some non-negative SX ∈ L1[−π,π].

Foundation of Digital Signal Processing: Signal Spaces, System Representation, and Quantization Effects Holger Boche 30



Stochastic Processes: Local Convergence Behavior

Theorem
Let φ be a function of sine type, whose zeros {tk}k∈Z are all real. Then, for
all I-processes X and all T > 0, we have

lim
N→∞ max

t∈[−T ,T ]
E

∣∣∣∣∣X(t) −
N∑

k=−N

X(tk)φk(t)

∣∣∣∣∣
2

= 0.

• We have a good local convergence behavior for I-processes.

H. Boche and U. J. Mönich, ‘‘Convergence behavior of non-equidistant sampling series,’’ Signal
Processing, vol. 90, no. 1, pp. 145–156, Jan. 2010
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Stochastic Processes:
Global Convergence Behavior without Oversampling

• There exist I-processes such that the global mean-square
approximation error increases unboundedly.

Theorem

Let φ be a function of sine type in S, whose zeros {tk}k∈Z are all real. Then
there exists an I-process X1 such that

lim sup
N→∞ sup

t∈R
E

∣∣∣∣∣X1(t) −

N∑
k=−N

X1(tk)φk(t)

∣∣∣∣∣
2

=∞.

H. Boche and U. J. Mönich, ‘‘Convergence behavior of non-equidistant sampling series,’’ Signal
Processing, vol. 90, no. 1, pp. 145–156, Jan. 2010
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Stochastic Processes:
Global Convergence Behavior with Oversampling

• Similar to the deterministic case, oversampling improves the global
convergence behavior of the series for I-processes.

Theorem

Let φ be a function of sine type, whose zeros {tk}k∈Z are all real. Then, for
all 0 < β < 1 and all I-processes X, whose power spectral density SX(ω) is
supported in [−βπ,βπ], we have

sup
N∈N

sup
t∈R

E

∣∣∣∣∣
N∑

k=−N

X(tk)φk(t)

∣∣∣∣∣
2

<∞.

H. Boche and U. J. Mönich, ‘‘Convergence behavior of non-equidistant sampling series,’’ Signal
Processing, vol. 90, no. 1, pp. 145–156, Jan. 2010
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Idea of Sampling-Based Signal Processing

• In many applications the task is to reconstruct some transformation Tf
of f ∈ PW1

π and not f itself.

Key idea of sampling-based signal processing:
• Not the whole signal is used to calculate some transformation of the
signal, but only the samples of the signal.
→ Calculate Tf from the samples of f

• Corresponds to the natural situation in digital signal processing, where
only the samples of the signal are available.

The question:
• Is it always possible to calculate Tf from the samples of f?

Sampling-based signal processing should be potentially possible
because f, as a bandlimited signal, is uniquely determined by its
samples.
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Stable Linear Time Invariant Systems

A linear system T : PW1
π → PW1

π is called stable linear time invariant (LTI)
system if:

• T is bounded, i.e., ‖T‖ = sup‖f‖
PW1

π
61 ‖Tf‖PW1

π
<∞ and

• T is time invariant, i.e.,
(
Tf(·− a)

)
(t) = (Tf)(t− a) for all f ∈ PW1

π and
t,a ∈ R.

The Hilbert transform H and the low-pass filter are stable LTI systems.

Example (Hilbert transform)

The Hilbert transform f̃ of a signal f ∈ PW1
π is defined by

f̃(t) = (Hf)(t) =
1
2π

∫∞
−∞−i sgn(ω)f̂(ω) eiωt dω,

where sgn denotes the signum function.
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Representation of Stable LTI Systems

• For every stable LTI system T : PW1
π → PW1

π there is exactly one
function ĥT ∈ L∞[−π,π] such that

(Tf)(t) =
1
2π

∫π
−π

ĥT (ω)f̂(ω) eiωt dω

for all f ∈ PW1
π, and the integral is absolutely convergent.

• Every ĥT ∈ L∞[−π,π] defines a stable LTI system T : PW1
π → PW1

π.

The operator norm ‖T‖ := sup‖f‖
PW1

π
61‖Tf‖PW1

π
is given by ‖T‖ = ‖ĥT‖∞.
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System Approximation

System approximation process:

N∑
k=−N

f(tk)(Tφk)(t)

• T : PW1
π → PW1

π is a stable LTI system.
• φk ∈ PW2

π, k ∈ Z, are reconstruction functions.
• f is a signal in PW1

π.

Theorem

Let {tk}k∈Z ⊂ R be a complete interpolating sequence for PW2
π and φk,

k ∈ Z, the corresponding reconstruction functions. Then, for all t ∈ R there
exists a stable LTI system T1 with continuous ĥT1 and a signal f1 ∈ PW1

π

such that
lim sup
N→∞

∣∣∣∣∣(T1f1)(t) −
N∑

k=−N

f1(tk)(T1φk)(t)

∣∣∣∣∣ =∞.

H. Boche and U. J. Mönich, ‘‘Sampling of deterministic signals and systems,’’ IEEE Transactions on

Signal Processing, vol. 59, no. 5, pp. 2101–2111, May 2011
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∣∣∣∣∣ =∞.

H. Boche and U. J. Mönich, ‘‘Sampling of deterministic signals and systems,’’ IEEE Transactions on

Signal Processing, vol. 59, no. 5, pp. 2101–2111, May 2011
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Conjecture 2.1

Conjecture

The divergence remains even if oversampling is applied:

Let {tk}k∈Z ⊂ R be a complete interpolating sequence and 0 < β < 1.
Then, for all t ∈ R there exists a stable LTI system T1 and a signal
f1 ∈ PW1

βπ such that

lim sup
N→∞

∣∣∣∣∣(T1f1)(t) −
N∑

k=−N

f1(tk)(T1φk)(t)

∣∣∣∣∣ =∞.

If this conjecture is true, it implies a no go result for sampling based
signal processing.
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General Sampling Functionals

• Sampling of the signal f corresponds to a point evaluation of f at the
sampling points {tk}k∈Z.

• It is also possible to consider more general linear functionals
ck : PW1

π → C, k ∈ Z.
• For example, functionals that also take the signal values in the
proximity of the sampling points into account.

New approximation process:

N∑
k=−N

ck(f) (Tφk)(t).

• In the classical sampling approach the functionals are given by
ck(f) = f(tk), k ∈ Z.
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Conjecture 2.2

For approximation processes that use the general evaluation functionals
we have the following conjecture.

Conjecture
Let σ < π. There exists a sequence of continuous linear functionals ck,
k ∈ Z, on PW1

π such that for all stable LTI systems T and all f ∈ PW1
σ we

have

lim
N→∞ sup

t∈R

∣∣∣∣∣(Tf)(t) −
N∑

k=−N

ck(f) (Tφk)(t)

∣∣∣∣∣ = 0.

If this conjecture is true, it shows that for all stable LTI systems a digi-
tal implementation is possible using general sampling functionals.

• It would be interesting to find suitable functionals.
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tal implementation is possible using general sampling functionals.

• It would be interesting to find suitable functionals.
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System Representation for Signals with Finite Energy

• Input signals with finite energy (f ∈ PW2
π)

T energy stable LTI system, i.e., ĥT ∈ L∞[−π,π]
• ‖Tf‖PW2

π
6 ‖T‖‖f‖PW2

π

• Mixed signal representation:

(TNf)(t) =

N∑
k=−N

f(t− k)hT (k)

• It is easy to see that

lim
N→∞

(
max
t∈R

∣∣∣∣∣(Tf)(t) −
N∑

k=−N

f(t− k)hT (k)

∣∣∣∣∣
)

= 0

for all f ∈ PW2
π.
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System Representation for Signals with Finite Energy

What is the behavior of the energy of the output signal, i.e.,

∫∞
−∞
∣∣∣∣∣
N∑

k=−N

f(t− k)hT (k)

∣∣∣∣∣
2

dt

and ∫∞
−∞
∣∣∣∣∣(Tf)(t) −

N∑
k=−N

f(t− k)hT (k)

∣∣∣∣∣
2

dt?

Theorem
There exists a signal f1 ∈ PW2

π and an energy stable LTI system T∗ such
that

lim sup
N→∞

∫∞
−∞
∣∣∣∣∣
N∑

k=−N

f1(t− k)hT∗(k)

∣∣∣∣∣
2

dt =∞.
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System Representation for Signals with Finite Energy

Divergence in discrete time:

Corollary
We have

lim sup
N→∞

∞∑
l=−∞

∣∣∣∣∣
N∑

k=−N

f1(l− k)hT∗(k)

∣∣∣∣∣
2

dt =∞.

Remark
The same result can be shown for arbitrary complete interpolating
sequences.
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Signal Processing Under Quantization and
Thresholding

• The principle of digital signal processing relies on the fact that certain
bandlimited signals can be perfectly reconstructed from their samples.

• Reconstruction of the signal: {f(k)}k∈Z → f

• Approximation of a transformation: {f(k)}k∈Z → Tf

• Perfect reconstruction only possible if the sample values are known
exactly.

• Not given in practical applications, because samples are disturbed
(quantizers with limited resolution, thresholding effects).
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The Threshold Operator Θδ
• The threshold operator Θδ sets all signal values, whose absolute value
is smaller than some threshold δ > 0 to zero.

• For continuous functions f : R→ C:

(Θδf)(t) = κδf(t), t ∈ R, where κδz =

{
z |z| > δ

0 |z| < δ

z

−5δ −3δ −1δ 1δ 3δ 5δ

κδz

−3δ

−5δ

1δ

3δ

5δ
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The Quantization Operator Υδ
• 2δ is the quantization step size
• For continuous functions f : R→ C:
(Υδf)(t) = qδf(t), t ∈ R, where qδz =

⌊
Rez
2δ + 1

2

⌋
2δ+

⌊
Imz
2δ + 1

2

⌋
2δi

x

−5δ −3δ −1δ 1δ 3δ 5δ

qδx

−5δ

−3δ

1δ

3δ

5δ
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The Reconstruction Process Aδ

• The threshold operator is applied on the samples {f(k)}k∈Z of signals
f ∈ PW1

π.
• The resulting samples {(Θδf)(k)}k∈Z are used to build an
approximation

(Aδf)(t) :=

∞∑
k=−∞(Θδf)(k)

sin(π(t− k))
π(t− k)

=

∞∑
k=−∞
|f(k)|>δ

f(k)
sin(π(t− k))
π(t− k)

of the original signal f.
• We have lim|t|→∞ f(t) = 0 (Riemann-Lebesgue lemma)
⇒ the series has only finitely many summands
⇒ Aδf ∈ PW2

π ⊂ PW1
π.

Since the series uses all ‘‘important’’ samples of the signal, one could
expect Aδf to have an approximation behavior similar to the Shannon
sampling series.
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Properties of the Reconstruction Process Aδ

1 For every δ > 0, Aδ is a non-linear operator.

2 For every δ > 0, the operator Aδ : (PW1
π, ‖ · ‖PW1

π
)→ (PW2

π, ‖ · ‖PW2
π
)

is discontinuous.

3 For some f ∈ PW1
π, the operator Aδ is also discontinuous with respect

to δ.

The non-linearity of the threshold operator makes the analysis difficult.

H. Boche and U. J. Mönich, ‘‘Unboundedness of thresholding and quantization for bandlimited
signals,’’ Signal Processing, 2012, accepted

H. Boche and U. J. Mönich, ‘‘Behavior of the quantization operator for bandlimited, nonoversampled
signals,’’ IEEE Transactions on Information Theory, vol. 56, no. 5, pp. 2433–2440, May 2010
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Approximation of Stable LTI Systems

• In many applications the task is to reconstruct some transformation Tf
of f ∈ PW1

π and not f itself.
• The goal is to approximate the desired transformation Tf of a signal f
by an approximation process, which uses only the samples of the
signal that are disturbed by the threshold operator.
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System Approximation under Thresholding

• If the samples {f(k)}k∈Z are known perfectly we can use

N∑
k=−N

f(k) T(sinc( · − k))(t) =
N∑

k=−N

f(k)hT (t− k)

to obtain an approximation of Tf.
• Here: samples are disturbed.→ Approximate Tf by

(Tδf)(t) := (TAδf)(t) =

∞∑
k=−∞(Θδf)(k)hT (t− k)

• Goal: small approximation error
Since

|(Tδf)(t) − (Tf)(t)| 6 |(Tδf)(t)|+ ‖T‖ ‖f‖PW1
π

it is interesting how large sup‖f‖
PW1

π
61|(Tδf)(t)| can get.
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Pointwise Stability

• The following theorem gives a necessary and sufficient condition for
sup‖f‖

PW1
π
61|(Tδf)(t)| to be finite.

Theorem
Let T be a stable LTI system, 0 < δ < 1/3, and t ∈ R. Then we have

sup
‖f‖

PW1
π
61

|(Tδf)(t)| <∞
if and only if ∞∑

k=−∞|hT (t− k)| <∞. (*)

• Note that (*) is nothing else than the BIBO stability condition for
discrete-time systems.

H. Boche and U. J. Mönich, ‘‘Complete characterization of stable bandlimited systems under
quantization and thresholding,’’ IEEE Transactions on Signal Processing, vol. 57, no. 12, pp.
4699–4710, Dec. 2009
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Pointwise Convergence

Corollary
Let T be a stable LTI system, 0 < δ < 1/3, and t ∈ R. If

∞∑
k=−∞|hT (t− k)| <∞ (*)

then we have
lim
δ→0

sup
f∈PW1

π

|(Tf)(t) − (Tδf)(t)| = 0.

• If (*) is fulfilled, then we have a good pointwise approximation behavior
because the approximation error converges to zero as the threshold δ
goes to zero.

H. Boche and U. J. Mönich, ‘‘Complete characterization of stable bandlimited systems under
quantization and thresholding,’’ IEEE Transactions on Signal Processing, vol. 57, no. 12, pp.
4699–4710, Dec. 2009
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Example: Ideal Low-Pass Filter

Even for common stable LTI systems like the ideal low-pass filter there are
problems because (*) is not fulfilled.

Example
TL: ideal low-pass filter, hTL(t) = sin(πt)/(πt)
→
∑∞
k=−∞|hTL(t− k)| =∞ for all t ∈ R \ Z

For t ∈ R \ Z and 0 < δ < 1/3,

sup
‖f‖

PW1
π
61

|(TL,δf)(t)| = sup
‖f‖

PW1
π
61

∣∣∣∣∣
∞∑

k=−∞
|f(k)|>δ

f(k)
sin(π(t− k))
π(t− k)

∣∣∣∣∣ =∞.
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Global Stability

We can also give a necessary and sufficient condition for the uniform
boundedness on the whole real axis.

Theorem

Let T be a stable LTI system and 0 < δ < 1/3. We have

sup
‖f‖

PW1
π
61
‖Tδf‖∞ <∞

if and only if

sup
06t61

∞∑
k=−∞|hT (t− k)| <∞

if and only if ∫∞
−∞|hT (τ)| dτ <∞. (**)

• Note that (**) is nothing else than the BIBO stability condition for
continuous-time systems.
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Global Uniform Convergence

Corollary
Let T be a stable LTI system and 0 < δ < 1/3. If∫∞

−∞|hT (τ)| dτ <∞. (**)

then we have
lim
δ→∞ sup

f∈PW1
π

‖Tf− Tδf‖∞ = 0.

• This shows the good global approximation behavior of Tδf if (**) is
fulfilled.

H. Boche and U. J. Mönich, ‘‘Sampling of deterministic signals and systems,’’ IEEE Transactions on

Signal Processing, vol. 59, no. 5, pp. 2101–2111, May 2011
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Threshold Tending to Zero

Theorem
There exists a signal f1 ∈ PW1

π such that

lim sup
δ→0

∣∣∣∣∣
∞∑

k=−∞
|f1(k)|>δ

f1(k)
sin(π(t− k))
π(t− k)

∣∣∣∣∣ =∞
for all t ∈ R \ Z.

Remark
Much more difficult behavior compared to the Shannon sampling series∑N
k=−N f(k)

sin(π(t−k))
π(t−k)

→ local uniform convergence (Brown’s theorem).

H. Boche and U. J. Mönich, ‘‘Sampling of deterministic signals and systems,’’ IEEE Transactions on

Signal Processing, vol. 59, no. 5, pp. 2101–2111, May 2011
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Conjecture 3.1

Conjecture
Let {tk}k∈Z ⊂ R be a complete interpolating sequence. Then, there exists a
signal f1 ∈ PW1

π such that for all t ∈ R \ {tk}k∈Z we have

lim sup
δ→0

∣∣∣∣∣
∞∑

k=−∞
|f1(tk)|>δ

f1(tk)φk(t)

∣∣∣∣∣ =∞.

Open Problems:
• Is a stable system implementation under quantization possible if
oversampling is applied?

• If Conjecture 2.2 (general sampling functionals) is true, what are the
consequences for quantization?
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Introduction

• Filters are a widely used tool in signal processing and system theory.
• Descriptive when the signals are treated in the frequency domain.
• Filters can be categorized according to their passband:

• low-pass type, high-pass type, band-pass type, band-stop type

• All signals that have only frequencies within the passband are not
disturbed by the filter.

We use the term system instead of filter because filters are often assumed
to be linear and time-invariant, and we do not want to restrict our analysis
a priori to systems with those properties.
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The Analyzed Systems

• We analyze band-pass type systems operating on bounded
bandlimited signals.

• Important in all applications where the peak value of the signal has to
be controlled.

• In wireless communication systems the peak value of the transmitted
signals has to be bounded by some constant in order that the power
amplifier does not overload (clipping of the signal).
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Efficient Band-Pass Type System

T

system

f

input signal

Tf

output signal

Band-pass type systems should be efficient in the sense that

P1) range(T) ⊆ B∞[ω1,ω2]
,

P2) Tf = f for all f ∈ B∞[ω1,ω2]
,

P3) T : B∞π → B∞[ω1,ω2]
is bounded.
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An Alternative Definition of Band-Pass Signals

Definition
For 0 6 ω1 < ω2 <∞ let
K(ω1,ω2) =

{
f∈L1(R) : f̂(ω) = 1 for |ω|∈ [ω1,ω2]

}
f̂ ∈ FK(ω1,ω2)

1
ω

ω2ω1−ω2−ω1

Definition
The space B∞[ω1,ω2]

consists of all signals f ∈ L∞(R) that fulfill
f(t) =

∫∞
−∞ f(τ)K(t− τ) dτ for all t ∈ R and all K ∈ K(ω1,ω2).

Note that we have B∞ω2
= B∞[0,ω2]

, according to this definition.
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No Linear Realization of Efficient Band-Pass Type
Systems

Theorem
Let 0 6 ω1 < ω2 6 π with w2 −w1 < π. There exists no linear operator T
defined on B∞π with the properties

1 range(T) ⊆ B∞[ω1,ω2]
and

2 Tf = f for all f ∈ B∞[ω1,ω2]

3 T : B∞π → B∞[ω1,ω2]
is bounded

Consequently, a linear realization of efficient band-pass type
systems for the signal space B∞π cannot exist.

• The result is very general, because there are many conceivable
realizations.

• For example we do not restrict the systems to be time-invariant.
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Non-Linear Realization of Efficient Band-Pass Type
Systems

• Now we drop the requirement that the system is linear.
• The following theorem shows that a non-linear realization of efficient
band-pass type systems is possible for the space B∞π .

Theorem
Let 0 6 ω1 < ω2 6 π. There exists an operator T defined on B∞π with the
properties

1 range(T) ⊆ B∞[ω1,ω2]

2 Tf = f for all f ∈ B∞[ω1,ω2]
, and

3 ‖Tf‖∞ 6 2‖f‖∞ for all f ∈ B∞π .

H. Boche, U. J. Mönich, A. Kortke, and W. Keusgen, ‘‘No-go theorem for linear systems on bounded
bandlimited signals,’’ IEEE Transactions on Signal Processing, vol. 58, no. 11, pp. 5639–5654, Nov.
2010
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Comparing Signals in the Frequency Domain

Definition
We say that f ∈ B∞π and g ∈ B∞π agree on the open frequency interval
(ω1,ω2), −∞ < ω1 < ω2 <∞, if∫∞

−∞ f(τ)h(τ) dτ =
∫∞
−∞ g(τ)h(τ) dτ

for all h ∈ L1(R) with ĥ(ω) = 0 for all ω ∈ R \ (ω1,ω2).

• For f ∈ B2
π this definition is equivalent to the definition that uses the

Fourier transform.
• Makes only a statement about what it means that two signals agree on
open sets of frequencies.
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Frequency Splitting for B2
π

• For B2
π it is possible to split a signal

with respect to its frequency content.
• The signal f1 is given by

f1(t) =
1
2π

∫ω2

ω1

f̂(ω) eiωt dω.

ωω1 ω2 π−π

f̂

ωω1 ω2 π−π

f̂1

ωω1 ω2 π−π

f̂2

For every signal f ∈ B2
π and every frequency interval [ω1,ω2] it is pos-

sible to split f into two signals f1 ∈ B2
π and f2 ∈ B2

π such that f agrees
with f1 on the frequency interval [ω1,ω2] and with f2 on the frequency
interval [−π,π] \ [ω1,ω2].
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Frequency Splitting for B∞π ?

Question
Given f ∈ B∞π . Can we find a decomposition f = f1 + f2 with f1 ∈ B∞ω1

,
0 < ω1 < π, and f2 ∈ B∞π , such that f and f1 agree on the frequency
interval (−ω1,ω1)?

If ‘‘yes’’:
• It would immediately follow that f2 agrees with the zero function on the
frequency interval (−ω1,ω1) and that f2 ∈ B∞[ω1,π]

.

• f1 would be the low-pass part of f, which agrees with f on the open
frequency interval (−ω1,ω1).

• f2 would be the band-pass part of f, which agrees with f on the open
set of frequencies (−π,−ω1) ∪ (ω1,π).
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No Frequency Splitting for B∞π
Theorem

Let 0 < ω1 < π. There exists a signal f ∈ B∞π,0 such that there exists no
signal f1 ∈ B∞ω1

such that∫∞
−∞ f(τ)h(τ) dτ =

∫∞
−∞ f1(τ)h(τ) dτ

for all h ∈ B1
ω1

.

• A frequency splitting is not possible for signals in B∞π .
• This signal theoretic result implies that there exists no
filter—regardless of how complicated the realization is made—that
can perform this task.

• Result is also true for the band-pass case.

H. Boche, U. J. Mönich, A. Kortke, and W. Keusgen, ‘‘No-go theorem for linear systems on bounded
bandlimited signals,’’ IEEE Transactions on Signal Processing, vol. 58, no. 11, pp. 5639–5654, Nov.
2010
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Approximate Frequency Splitting

For 0 < ω1 <∞, δ > 0, and 1 < κ <∞ let K(ω1, δ, κ) denote the set of all
functions K ∈ L1(R), whose Fourier transform fulfills ‖K̂‖∞ 6 κ, K̂(ω) = 1
for |ω| 6 ω1, and K̂(ω) = 0 for |ω| > ω1 + δ.

For K ∈ K(ω1, δ, κ) we define the system ΨK : B∞π,0 → B∞ω1+δ,0 by

(ΨKf)(t) =

∫∞
−∞ f(τ)K(t− τ) dτ.

• For signals in B2
π, K̂ has the meaning of a transfer function.

• Relaxation of P1)

Theorem
For all 0 < ω1 < π and 1 < κ <∞ we have

lim inf
δ→0

inf
K∈K(ω1,δ,κ)

‖ΨK‖ =∞.

H. Boche, U. J. Mönich, A. Kortke, and W. Keusgen, ‘‘No-go theorem for linear systems on bounded
bandlimited signals,’’ IEEE Transactions on Signal Processing, vol. 58, no. 11, pp. 5639–5654, Nov.
2010
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Approximate Frequency Splitting
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2010
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Conclusion

• We analyzed the convergence behavior of sampling series for signal
reconstruction and system approximation.

• It was shown that quantization and thresholding impair the
convergence of the sampling series.

• For the space B∞π , a linear realization of efficient band-pass type
systems and frequency splitting are not possible.
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