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A Little More Abstractly ...
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Or in Automotive ...
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The State of Affairs

e 1 security domain =1 (or more) dedicated processors
— Sharing the communication medium is bad enough
— But we have techniques for that

e (OS’s are not to be trusted
— So sharing the processors is not possible
— At least for high robustness/high reliability applications

e But this is wasteful
— Processor cycles, energy and materials consumption
— Complexity, over-engineering, operation, maintenance



Secure Virtualization
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Requirements

Processor is partitioned into different guest systems

Applications Security critical
General purpose OS’s applications

Critical to avoid fault propagation and information leakage
Isolation:

— Each guest system executes as if in sole control of the
processor

— Communication not tampered with by the processor
This is called a separation kernel |

[ The critical component for end-to-end system security ]




Our Goal HEEES

P R O S P E R

* Builda

— formally specified

— fully verified at machine code level

— separation kernel
* (or: Secure hypervisor)

— for a commodity smartphone processor/SoC
* ARMv7, ARM CortexAS8

— capable of supporting
e commodity os
e sim application

— with guaranteed strong isolation properties



Related Work

sel4.
— Microkernel
— Verification as Haskell level
— Weak isolation guarantees
Microsoft Hyper-V + Saarbrucken:
— Weak isolation guarantees, C -> machine code
NSA + clients:
— Several experiments
— Formally verified separation kernel
— Limited model, few public details available
— Green Hills CC certified separation kernel
— Less weak isolation properties



FreeRTOS
Linux

Android
Other

The Target System
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Softsim
SoftTPM

Other

ARMvV7, no devices, rudimentary MPU



The Prosper Kernel, vO

Almost minimal non-trivial first step

* No virtual memory

* But explicit communication

Two guest systems

Context switching

* Fixed scheduling

e Static memory allocation

Kernel routines for communication between guest systems
Similar to SICS hypervisor, but for some details

Design for verification



The Prosper Kernel, vO
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How Functional Is This?

Not very functional at all

* No devices
 Nae, a memory mapped device w/o dma would be ok
* No hardware interrupts yet
* But polling would work

* No memory management

* No kernel/user space guest system distinction

On the other hand:

* Can run two simple controllers

 that communicate using asynchronous message passing
* with some care



Properties

Isolation:
e Quests cannot unduly influence each other
 Allowed information flow only

This is the goall

Other properties are relevant too:
* Functionality
 Extent of virtualization
* Performance



Isolation

Guest, [
Guest,’

/O [ > Guest,

Kernel
ARM

Vanilla noninterference:
— Guest,, Guest, are parts of memory
— Observe Guest,:s memory
— Pick Guest,
— Pick Guest,, Guest,’
Isolation:

— Guest, + Guest, + Kernel + ARM cannot be distinguished
from Guest, + Guest,” + Kernel + ARM



Isolation

& Guest, [

| > Guest
/\/ 1 Guest,’

Kernel
ARM

Vanilla noninterference:

— Guest,, Guest, are parts of memory

— Observe Guest,:s memory
Doesn’t work, sorry: Guestl and

— Pick GUEStl Guest2 are meant to communicate
— Pick Guest,, Guest,’

Isolation:
— Guest=Guest, + Kernel + ARM.canrot e distinguished

from.GuestTFGuest,” + Kernel + ARM



Our Approach

ldea:
* Define ideal model
* |deal model specifies desired behaviour
— By extension also the undesired behaviour
* Correct by construction

Real model is a model of the implementation

Correctness proof:

* Show that ideal model = real model
= js “indistinguishability”, or “equivalent behaviour”



Real Model

ARM

We already have it

* Two guest systems sharing one ARM processor
* Message passing using kernel calls + context switching
* Ingredients:
— Kernel handlers for transitions to privileged modes
— Formal model of ARM hardware (Cambridge HOL4)



|deal Model

Guest, Guest,

H’ H’
ARM <= ARM

ldeal model

— Guest, and Guest, execute “as is” on physically separate
ARM processors

— User mode execution only

— Communication, context switching, error handling, by
“magic”

— Key part of the proof - not trivial stuff



Simulation

Need to:
— Establish a correspondence between computation states
— Show that correspondence preserved under computation

Ideal world Real world



... and the Other Direction Too

Need to:
— Establish a correspondence between computation states
— Show that correspondence preserved under computation

O
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— This direction is not shown in seL4 + Hyper-V exercises
— Important for information flow control



What Is Involved?

Real model (in HOL4)

|deal model (in HOL4)

“Top level theorem” (in HOL4)

Handler specifications (in HOL4)

ARM security lemma (in HOL4)

— Instructions are well-behaved re. mpu policy
— Project in itself

Handler specs implies top level theorem (in HOL4)
Handler correctness (in BAP)

Boot code correctness (in BAP)

Various helper tools

So far: > 3 manyears in total



Next Steps and Challenges

Many: Fine grained timing, memory management, |0, multicore,
tools

— We are doing this

Does formal verification give absolute security guarantees?
— Sorry, no

Complexity?
— Yes this is an issue

Does this scale?

— We think so

— Product line approach should be feasible

— But what about device and (processor) platform proliferation?



Thank You!



