ACCESE ™=

the future

Provably Secure Execution Platforms for
Embedded Systems

Mads Dam
TCS
School of Computer Science and Communication

Joint work with colleagues from SICS and KTH

oooooooooooooooooooo

Access Industry Workshop, 24 Jan 2013 R O S

Trace

LPDDR2 § LPDDR2
analyzer

JTAG/ FLASH
Emulation @ controller

SDRAM

High-Speed GPIO il GPIO
controller

USB 2 OTG
™ CS|-2 | Camera

OMAPMX Sub camera

Digital MIC W ®d)

ARM* Cortex"- M3
TWL6030

MPCore™ ARM® Cortex™- M3
POWERVR™ IVA Image Signal m
SGX540 graphics video § Processor (ISP)

Shared memory controller/DMA

Timers, Interrupt controller, mailbox

Boot/secure ROM

M-Shield™ Security Technology: SHA-1/MD5,
DES/3DES, RNG, AES, PKA, secure WDT, keys

Display

eMMC/MMC/SD HDM|™ controller'
parallel-serial

) m |' HF Speakers

MMC/SD TPD12S015

card Handset
Q’ W microphone

REF/CLK

CDC3S04
clock
driver

HD

television

A Little More Abstractly ...

10 Applications Security critical
General purpose OS’s applications

l l l
JALD

Communication buses

Or in Automotive ...

10 Braking Engine . . . |nfotainment

l

systems control

2 §-012) 11.00

@ $ 4 0 -3

Communication buses >

The State of Affairs

e 1 security domain =1 (or more) dedicated processors
— Sharing the communication medium is bad enough
— But we have techniques for that

e (OS’s are not to be trusted
— So sharing the processors is not possible
— At least for high robustness/high reliability applications

e But this is wasteful
— Processor cycles, energy and materials consumption
— Complexity, over-engineering, operation, maintenance

Secure Virtualization

10 Applications Security critical
General purpose OS’s applications

| N 7
JALD

Communication buses >

Requirements

Processor is partitioned into different guest systems

Applications Security critical
General purpose OS’s applications

Critical to avoid fault propagation and information leakage
Isolation:

— Each guest system executes as if in sole control of the
processor

— Communication not tampered with by the processor
This is called a separation kernel |

[The critical component for end-to-end system security]

Our Goal HEEES

P R O S P E R

* Builda

— formally specified

— fully verified at machine code level

— separation kernel
* (or: Secure hypervisor)

— for a commodity smartphone processor/SoC
* ARMv7, ARM CortexAS8

— capable of supporting
e commodity os
e sim application

— with guaranteed strong isolation properties

Related Work

sel4.
— Microkernel
— Verification as Haskell level
— Weak isolation guarantees
Microsoft Hyper-V + Saarbrucken:
— Weak isolation guarantees, C -> machine code
NSA + clients:
— Several experiments
— Formally verified separation kernel
— Limited model, few public details available
— Green Hills CC certified separation kernel
— Less weak isolation properties

FreeRTOS
Linux

Android
Other

The Target System

> Guest, Guest,

<€

Separation kernel

ARM hardware

N

Softsim
SoftTPM

Other

ARMvV7, no devices, rudimentary MPU

The Prosper Kernel, vO

Almost minimal non-trivial first step

* No virtual memory

* But explicit communication

Two guest systems

Context switching

* Fixed scheduling

e Static memory allocation

Kernel routines for communication between guest systems
Similar to SICS hypervisor, but for some details

Design for verification

The Prosper Kernel, vO

TN
Guest, Guest,
AS —J

Separation kernel

ARM hardware

How Functional Is This?

Not very functional at all

* No devices
 Nae, a memory mapped device w/o dma would be ok
* No hardware interrupts yet
* But polling would work

* No memory management

* No kernel/user space guest system distinction

On the other hand:

* Can run two simple controllers

 that communicate using asynchronous message passing
* with some care

Properties

Isolation:
e Quests cannot unduly influence each other
 Allowed information flow only

This is the goall

Other properties are relevant too:
* Functionality
 Extent of virtualization
* Performance

Isolation

Guest, [
Guest,’

/O [> Guest,

Kernel
ARM

Vanilla noninterference:
— Guest,, Guest, are parts of memory
— Observe Guest,:s memory
— Pick Guest,
— Pick Guest,, Guest,’
Isolation:

— Guest, + Guest, + Kernel + ARM cannot be distinguished
from Guest, + Guest,” + Kernel + ARM

Isolation

& Guest, [

| > Guest
/\/ 1 Guest,’

Kernel
ARM

Vanilla noninterference:

— Guest,, Guest, are parts of memory

— Observe Guest,:s memory
Doesn’t work, sorry: Guestl and

— Pick GUEStl Guest2 are meant to communicate
— Pick Guest,, Guest,’

Isolation:
— Guest=Guest, + Kernel + ARM.canrot e distinguished

from.GuestTFGuest,” + Kernel + ARM

Our Approach

ldea:
* Define ideal model
* |deal model specifies desired behaviour
— By extension also the undesired behaviour
* Correct by construction

Real model is a model of the implementation

Correctness proof:

* Show that ideal model = real model
= js “indistinguishability”, or “equivalent behaviour”

Real Model

ARM

We already have it

* Two guest systems sharing one ARM processor
* Message passing using kernel calls + context switching
* Ingredients:
— Kernel handlers for transitions to privileged modes
— Formal model of ARM hardware (Cambridge HOL4)

|deal Model

Guest, Guest,

H’ H’
ARM <= ARM

ldeal model

— Guest, and Guest, execute “as is” on physically separate
ARM processors

— User mode execution only

— Communication, context switching, error handling, by
“magic”

— Key part of the proof - not trivial stuff

Simulation

Need to:
— Establish a correspondence between computation states
— Show that correspondence preserved under computation

Ideal world Real world

... and the Other Direction Too

Need to:
— Establish a correspondence between computation states
— Show that correspondence preserved under computation

O

IR
O

O

Ideal world Real world

N
O

— This direction is not shown in seL4 + Hyper-V exercises
— Important for information flow control

What Is Involved?

Real model (in HOL4)

|deal model (in HOL4)

“Top level theorem” (in HOL4)

Handler specifications (in HOL4)

ARM security lemma (in HOL4)

— Instructions are well-behaved re. mpu policy
— Project in itself

Handler specs implies top level theorem (in HOL4)
Handler correctness (in BAP)

Boot code correctness (in BAP)

Various helper tools

So far: > 3 manyears in total

Next Steps and Challenges

Many: Fine grained timing, memory management, |0, multicore,
tools

— We are doing this

Does formal verification give absolute security guarantees?
— Sorry, no

Complexity?
— Yes this is an issue

Does this scale?

— We think so

— Product line approach should be feasible

— But what about device and (processor) platform proliferation?

Thank You!

