The 1912 Nobel Prize in Physics

Gustaf Dalén: “for his invention of automatic regulators for use in conjunction with gas accumulators for illuminating lighthouses and buoys.”

Some Swedish Industries

- Nordiska Armaturfabriken 1896 (NAF ⇒ Saab ⇒ Alfa Laval Automation ⇒ ABB)
- TA 1897 Hilmer Andersson (+ Tour Agenturer Tour Andersson ⇒ TAC ⇒ Schneider)
- AGA 1904
- Källe Regulator 1921
- ARCA regulatorn GunnAR CARlstedt 1918, Berlin 1922, IVAs guldmedalj 1924
- Billman Regulator 1932 (⇒ Landis and Gyr ⇒ Siemens)
- ElektronLund 1955 (Satt Control, Alfa Laval Automation ⇒ ABB)
- ASEA (⇒ ABB)
- Ericsson, Philips, Kockums, Volvo
- Bofors (⇒ Saab ⇒)
- Saab many different divisions

Nils Gustaf Dalén 1869-1937 and AGA

- Chalmers 1896
- One year with Stodola (Hurwitz stability criteron) vid ETH
- Technical director Svenska Karbid och Acetylen 1901
- CEO Svenska Aktiebolaget Gasackumulator (AGA) 1909
- Nobel Prize in Physics 1912
- AGA incorporated in Linde Group 2000
 Scientific recognition, inventor, entrepreneur, businessman
- Hypothetical question on research funding: VR - too few publications! Vinnova - Strong industrial impact!
- Has he contributed to Chalmers high Shanghai rating?

The 1912 Nobel Prize in Physics

- Many candidates: Kammerlingh Onnes (1913), Max Planck (1918), Albert Einstein (1921), Walther Nernst (1920), Henri Poincaré (†), ...
- Unanimous physics committee, chaired by professor Gustaf Granquist Uppsala, proposed Heike Kammerlingh Onnes
- Erik Johan Ljungberg CEO of Stora Kopparberg, member of the class for economic, statistical and social sciences proposed Dahlén, nominated Dahlén
- Discussion November 12 1912, Ljungberg’s proposal won the vote 37-28

Automatic Control in Sweden

1. Introduction
2. The Entrepreneurs and their Companies
3. ASEA - Master of Frequency Response
4. Military Projects
5. IBM Nordic Laboratory
6. Academia
7. Summary

Theme: Followed the international pattern.

Billmanregulator 1932-1980 - Stig Billman

- Civ. ing. KTH 1929, MS thesis “Behavior of temperature controllers”
- Birka regulator company automation of oil burners
- Billmanregulator AB March 16, 1932 for constructing and selling oil burners
- Motor-driven valve with thermal feedback
- Pioneering work in temperature control of buildings
- Rapid expansion with strong board from large export companies AGA, Ericsson et al
- Global sales and manufacturing
- Incorporated in Landis & Gyr 1980
- Landis & Gyr acquired by Siemens Building Technology 1998
Billman's Electric Valve

- Use motor with relay as an amplifier
- Thermistors give long time constants for integral control (thermal feedback)

Approximate relay by high gain use voltage balance
\[
\frac{1}{1+st} V = E, \quad U = \frac{k_v}{s} V = \frac{k_v (1 + sT)}{s} E
\]

Källé regulator 1921-1969

- Torsten Källé 1893-1975
- Civ ing CTH 1919 worked at Billerud paper mill
- Started Källeregulator AB in Säffle 1921
- The Källé controller - and the carrot consistency sensor
- Gustaf Dalén medal 1955 Chalmers engineering association
- IVA's Gold Medal for his contribution to automatic control 1958
- Honorary doctor at Chalmers 1963
- Donation for the professorship in automatic control at Chalmers 1963
- Ekman medal from Svenska Pappers- och Cellulosaingenjörförbundet 1963
- Acquired by Bonniers renamed EUR-Control

Nordiska Armaturfabriken NAF

- Founded in Linköping 1899
- Valves, pressure sensors and regulators
- Manufactured valves in Lund
- Flight instruments, gyro horizons, altimeters
- Pneumatic controllers
- DCS system SDM20, SDM 30
- Relay auto-tuning based on KJs and Tore patent
- Development office in Lund Science Park Tore Hägglund worked there 1985-89
- Controller activity sold to Satt Control, Ahlsell, Alfa Laval
- Automation, ABB
- Controllers sold to Flow Serve 2004

Tour & Andersson - TAC - Schneider

- 1875 A. H. Andersson & Co Christiania valves
- Tour Agentur, Stockholm RVO valve
- 1952 First electronic controller TE1
- 1962 First transistorized controller TE5
- 1966 Incentive (Wallenberg) buys A. H. Andersson
- 1970 Incentive buys 75% of Tour Agentur
- 1968-78 Computer Control of Buildings LTH
- 1975 Acquires part of Carl Olin AB DDC-6
- 1975 Computerized system 6000
- 1977 Tour & Andersson (TA) formed
- 1984 TA SYSTEM 7 energy control and building management
- 1995 TA Hydronics and TA Control
- 1996 Head office moves to Malmö
- 2003 Schneider Electric

Block Diagram

\[
G(s) = \frac{k}{s} \frac{h_r}{1 + \frac{sT}{s}} \approx \frac{1}{sT} kT + \frac{k}{s}
\]

Källé's Controller

NAF's Pneumatic PID Controller

Automatic Control in Sweden

1. Introduction
2. The Entrepreneurs and their Companies
3. Large Industries
4. Military Projects
5. IBM Nordic Laboratory
6. Academia
7. Summary

Theme: Followed the international pattern.
Power Systems

- Turbine controller (Ytterberg ABB)
- Strong collaboration between ABB and Swedish State Power Board (Vattenfall)
- Problems with long distance power transmission
- Ivar Herlitz
 Engineer KTH, work at ABB
 Harvard and GE Schenectady
 Riverside Power Co
 Stanford
 PhD KTH. The Stability of Long Transmission Lines. KTH 1928
- Uno Lamm and HVDC
- The nuclear reactors AB Atomenergi
- Asea Atom
- Syd Kraft (EON)

High Voltage DC Transmission

- Uno Lamm ABB
 CI KTH 1927, ABB, PhD KTH 1943
- Cable to Gotland 1954 - mercury arc switches
- An interesting hybrid system
- ASEA achieved global dominance
- Major improvements with thyristor valves
- Hardware and systems principles
- Safety a major concern

ASEA - Masters of Frequency Response

- The Central Laboratory
- Age Garde and Erik Persson
- How control problems were solved
- Impact of Nyquist’s stability criterion
- Brave experimentation with Frequency Response
- Interesting design methods
- Active on the international arena CIGRE, IFAC, IEE
 Age Garde participated in the Cranfield konferens, member of Swedish IFAC committee
 Participation at the ASME Frequency Response Symposium New York
 Erik Persson IFAC Basel 1963
- At the frontline in the mid 1950s

Impact of the Nyquist Theorem

We had designed controllers by making simplified models, applying intuition and analyzing stability by solving the characteristic equation. (At that time, around 1950, solving the characteristic equation with a mechanical calculator was itself an ordeal.) If the system was unstable we were at a loss, we did not know how to modify the controller to make the system stable. The Nyquist theorem was a revolution for us. By drawing the Nyquist curve we got a very effective way to design the system because we know the frequency range which was critical and we got a good feel for how the controller should be modified to make the system stable. We could either add a compensator or we could use extra sensor.

Erik Persson Free translation from seminar in Lund.

Herlitz Stability Analysis

The swing equation

$$\frac{d^2\delta}{dt^2} = P_g - P_c \sin \delta, \quad P_{max} = \frac{V_l V_i}{X}$$

δ angle deviation, \(V_g\) generator voltage, \(V_l\) line voltage, \(X\) line reactance, \(P_g\) generated power, \(P_c\) consumed power

Center at \(\delta_0\)
Node at \(\pi - \delta_0\)
Homo-clinic orbit through center

HVDC Control Principle

- Direction of power flow can change rapidly
- Find a sound principle to control power transmission (architecture)! The current is

$$I = \frac{V_l - V_i}{R}$$

- Can this relation be used safely?

When the Nyquist Theorem arrived at ASEA

- Nyquist Regeneration Theory Paper 1932
- Control activity at ASEA
 - Central laboratory Age Garde/Erik Persson
 - Model-Solve Characteristic Equation-Guess-Modify
 - Computational tools - mechanical calculator
 - The Nyquist revolution
 - Garde, A (1948) Frekvensanalytisk behandling av regelssystem. Aseas tidning (Frequency Analysis of Control Systems) 27-33
 - Naval Procurement Agency (Marinförsvaltningen)
 - Seminars by Garde and Persson in Lund

Depth Control of Submarines

- How to generate sine-waves and how to measure and record depth and trim?
State Feedback using Nyquist Plots

Swedish Power Network 2

Automatic Control in Sweden

1. Introduction
2. The Entrepreneurs and their Companies
3. Large Industries
4. Military Projects
5. IBM Nordic Laboratory
6. Academia
7. Summary

Summary

Knowledge about the Nyquist theorem changed control at ASEA from trial and error to design

Group of critical size at the Central Laboratory in Västerås

A systematic way to obtain models from experimental data

A nice design method, notice multi-variable aspects

Fearless use of frequency response for modeling

Many applications

Group very active internationally CIGRE, ASME, IFAC

Missed the paradigm shift in 1960, optimal control, computer control and Kalman filtering

Unfortunately influence on the Chair of Control at KTH

The Defense Industry - The Large Projects

Alliansfri i fred och neutral i krig - Non-aligned in peace neutral in war

FOA 1945

Chemistry, Physics Electronics, Operations research

Bäckebobomber (Boebrand, Luthander)

TTN Gruppen Bengt Joel Andersson

Stril 60, JA37 Viggen, (Gripen)

Aeronautics KTH Prof Luthander

The Army, Navy and Air Force Procurement Agencies

Avionics Bureau

Missile Bureau

Saab

Bofors - Gun-sights

Volvo Flygmotor

The Electronics Industry

AGA, Arenco, Philips, TUAB

Gun Sights

Draper and Sperry

Wilkinson Saab

Gun-sight for dive bombing

Air-driven gyroscope, electro-mechanical analog computer, nonlinear function generator in the form of an asymmetrical rotating body. Gyro manufactured by NAF, function generator by Arenco (Tändsticksbolaget)

Made in large numbers in the US by licensing

Wilkinson's Gun Sight

Wilkinson's Gun Sight
Missile Guidance

- The threat
- Viggen
- KTH Flygtteknik Prof Sten Luthander
- Bäckebom 1944-0613
- Gustav Boestad KTH
- Saab R-System
- The TTN Group

Saab R-System

- Airplanes changed from carriers of black boxes to systems
- Formed 1954, inspired by Rand Corporation 1945
- Hans Olov Tjalve - aeronautical engineer KTH
 Enthusiastic, charismatic, visionary leader
- Recruited a fantastic talent pool 75 persons in 1955
 Strong creativity, broad range and deep knowledge
 Tore Gullstrand, Bengt Gunnar Magnusson, Gösta Hellgren, Gösta Lindberg, Lars Erik Zachrisson, Viggo Wentzel
- Three groups: Systems, avionics, special projects
- Airborne computers, missile guidance, inertial navigation, simulation, operations analysis, Datasab
- Electronics industry formed TUAB to compete

Lars Erik Zachrisson

- Engineering Physics KTH 1945
- FOA 1947-57 missile guidance
- Proportional navigation 1946.
 Control principle for guidance
 Patent and analysis
- Markov Games 1955 (Isaac's 1965)
 A tank duel with game theoretic implications, 1955, 1957
- Saab R-system 1957-63
- Docent in Automatic Control KTH 1959
- Optimization and System Theory KTH
- Professor System Theory and Optimization KTH 1963 (69)
- Anders Lindquist 1972 (Z's first PhD student)

FOA

- Thorvald Persson
- Lars Erik Zachrisson
- proportional navigation
- Inertial navigation
- Philips, AGA, Saab
- MIT Draper
- Analog computing
- Jonas Agerberg
- SAMS 1959
- ADA
- Radar, computers, Besk

TTN Gruppen

- Goal: Understand inertial navigation and guidance
- Structure
 FFV: Torsten Bergens
 FOA: Thorvald Persson
 KTH: Bengt Joel Anderson, Svante Jahnberg, Åslund, KJÅ
 Aga, Philips, Saab, Servomechanism
- Free-wheeling, chaotic
 FOA's ball gyro, …
- Free access to Besk (The only Swedish Computer)
- The MIT connection
- Fantastic learning experience BUT many constraints

The Idea

Make a pendulum and increase its apparent moment of inertia with acceleration feedback
- Avoid closing the Schuler loop through the gimbals
- A single axis gyro can measure angular acceleration

Equations of motion:

\[\frac{d^2 \theta}{dt^2} = -m g \psi + m R \frac{d^2 \alpha}{dt^2} + u \]

\[u = -k \frac{d \theta}{dt} \]

\[(J + k) \frac{d^2 \psi}{dt^2} = -m g \psi + m R \frac{d^2 \alpha}{dt^2} + u \]

\[(J + k) \frac{d^2 \psi}{dt^2} + m g \psi = (m R - J - k) \frac{d^2 \alpha}{dt^2} \]
\[e(t) = \frac{g\omega_s^2 t^3}{6} \]
\[e(t) = R\omega_s \left(t - \frac{1}{\omega_s} \sin (\omega_s t) \right) \]
\[\omega_s = \sqrt{g/\mathcal{T}} \text{ (84 min)} \]

Schuler Tuning - Error Growth

Recognition from MIT

The condition stated by Eq. (4.1) is not physically realizable because of the small pivot-centre-of-mass separation. After 1923 apparently no attempt was made to synthesize a Schuler-tuned pendulum electromechanically, although recently such a scheme has been proposed by Åström and Hoctor. The method by which vertical indication is accomplished today was, to the authors’ knowledge, first described by Bolech in 1940 and is the subject pursued in the following chapter, with the kinematic relationships developed here as a basis.

Automatic Control in Sweden

1. Introduction
2. The Entrepreneurs and their Companies
3. ASEA - Master of Frequency Response
4. Military Projects
5. IBM Nordic Laboratory
6. Academia
7. Summary

Theme: Followed the international pattern.

IBM Nordic Laboratories 1960-1995

Euforia about computer control in the process industry

- Three tasks
 - Develop technology for computer control
 - Execute good demonstration projects
 - Computer architecture for process control

- The Billerud project 1962-67
 - Experimental determination of models for control of paper machine dynamics inspired the maximum likelihood method for system identification by Torsten Bohlin and KJÅ
 - Minimum variance control KJÅ
 - Excellent project, unfortunately no book

- IBM abandoned plans to buy an instrument company
- Impact on Academia
 - K. J. Åström professor in control at LTH 1965
 - Torsten Bohlin professor in control at KTH 1971
 - Jorma Rissanen professor in control LTH 1975
 - Hans Andersin professor in computer science Helsinki
 - Dines Björner professor in computer science DTU 1976

Basis Weight and Moisture Control

- Two important loops
- Triangular coupling MISO works

The Billerud-IBM Project

- Background
 - IBM and Computer Control
 - Billerud Trygge Bergek and Saab

- Goals
 - Billerud: Exploit computer control
 - IBM: Experience in computer control. Recover prestige!
 - What should a good process control computer look like?
 - Cram as much as possible into the system!
 - On-line process control, production planning, production supervision, quality control, reporting

- Schedule
 - Start April 1963
 - Computer Installed December 1964
 - System identification and on-line control March 1965
 - Full operation September 1966
 - 40 man-years effort in about 3 years

The Drying Section

Computer Resources

- IBM 1720 (special version of 1620 decimal architecture)
- Core Memory 40k words (decimal digits variable word length)
- Disk 2 M decimal digits
- 80 Analog Inputs
- 22 Pulse Counts
- 100 Digital Inputs
- 45 Analog Outputs (Pulse width)
- 14 Digital Outputs
- Fastest sampling rate 3.6 s
- One hardware interrupt (special engineering)
- Home-brew real time operating system
Modeling and Control

- Good support from management Kai Kinberg:

 This is a showcase project! Don’t hesitate to do something new and spectacular if you believe that you can pull it off and finish on time.

- Process understanding, data logging and modifications (mixing tanks)
- Modeling by frequency response key for success of classical control
- Physical models may give dynamics but not disturbances
- Stochastic control theory is a natural formulation of industrial regulation problems
- Can we find something similar for state space systems?
- Big struggle to do real plant experiments
- Wasted a lot of time on historical data

Practical Issues

- Sampling period
- To perturb or not to perturb
- Open or closed loop experiments
- Normal or perturbed operation
- Model validation
- 20 min for two-pass compilation of Fortran program!
- Skills and experiences

Results

Controller removes the low frequency component

Summary

- Extremely good and farsighted management

 Kai Kinberg IBM Nordic Laboratory, Tryggve Berge Billerud
- Good resources with competent and interested participants
- Good mix of people with many short term participants
- Open atmosphere with pressure on dead-lines and results
- A successful flagship installation
- Straw-man for computer architecture for process control

 IBM 1800, IBM 360
- Method for identification of stochastic models

 Basic theory: consistency, efficiency, persistent excitation

 Engineering practice: input design, execution of experiments
- Minimum variance control
- Project well documented in IBM reports and a few papers but we should have written a book (Bellman’s advice)

Modeling from Data (Identification)

Process model

\[dx = Ax dt + Bu dt + dv \]

\[dy = Cx dt + de \]

Much redundancy \(z = Tx + \) noise model. The innovation representation reduces redundancy of stochastics and filter gains appear explicitly in the model

\[dx = Ax dt + Bu dt + K(dy - Cx dt) \]

\[= (A - KC) x dt + Bu dt + Kde \]

\[dy = Cx dt + de \]

Canonical form for MISO system removes remaining redundancy, discretization gives \(C \) Kalman filter dynamics

ARX

\[A(q)y(t) = B(q)u(t) + C(q)e(t) \]

Minimum Variance Control

Summary of Minimum Variance Control

- Regulation can be done effectively by minimum variance control
- Easy to validate

 \[r(t) = 0, \quad t \geq k \]
- Prediction horizon is the design variable!
- Robustness depends critically on the sampling period
- The Harris Index
- OK to assess but why not adapt?

Automatic Control in Sweden

1. Introduction
2. The Entrepreneurs and their Companies
3. ASEA - Master of Frequency Response
4. Military Projects
5. IBM Nordic Laboratory
6. Academia
7. Summary

Theme: Followed the international pattern.
Teknologförening och IVA

- Svenska Teknologföreningen (Sveriges Ingenjörer, Association of Swedish Graduate Engineers)
 - The Club Brunkebergs gatan Stockholm
 - Courses
 - Extensive course activity 1940-70 Donald Campbell from Gordon Brown’s Servomechanism Laboratory at MIT gave the first course in servo-systems in 1948 invited by Teknologföreningen (Invitation initiated by Bertil Palm Phileps Teleindustries)
 - National committee for IFAC
 - Instrument tekniska föreningen ITF 1961

Royal Swedish Academy of Engineering IVA

- Scholarships
 - Computers: IAS Princeton and Besk Control: Qvarnström (Botors), Åslund (KTH), Sandblad (ASEA)
- National committee for IFAC
- Instrument tekniska föreningen ITF 1961

Automatic Control in Sweden

1. Introduction
2. The Entrepreneurs and their Companies
3. ASEA - Master of Frequency Response
4. Military Projects
5. IBM Nordic Laboratory
6. Academia
7. Summary

Theme: Followed the international pattern.

KTH

- Donald Campbell MIT Servomechanisms Lab lecture 1948
- First lectures 1949/50
 - Laszlo von Hamos signed IFAC declaration for Sweden in Heidelberg Sept 1956.
 - Laszlo von Hamos appointed professor 1959
 - Torsten Bohlin 1971
 - Bo Wahlberg 1991, Håkan Hjalmarsson, Elling Jacobsson, Mikael Johansson, Karl Henrik Johansson

LTH, LTH, Uppsala, Luleå

- Lund
 - Linköping
 - Jorma Rissanan 1975 Lennart Ljung 1976
 - Uppsala
 - Torsten Söderström, 1974, Peter Stoica 1998, Anders Ahlén, Mikael Sternad
 - Luleå Thomas Gustafsson

Summary

- Early development driven by inventors: sensors, actuators and controllers
- Later development driven by large companies and military projects
- Common practice to send engineers abroad Dalén, ASEA, Philips, and to collaborate with universities even if there were no control departments
- IVA acted as CTOs of Sweden
- Academic development relatively late
- Analog computing was a good meeting ground SAMS (Skandinaviska Analogi Maskin Sällskapet replaced by Reglermötet
- Collaboration with the instrument society did not happen even if they were both hosted by IVA, very different development in Norway NFA 1958 and Finland RF 1953
- Much has happened after 1965