
Network Security Games

Saurabh Amin

Massachusetts Institute of Technology

ACCESS-FORCES CPS workshop
KTH, October 26-27, 2015

Amin (MIT) FORCES October 26, 2015 1 / 46



FORCES

National Science Foundation (NSF) sponsored CPS Frontiers project

Incen%ve''
theory'

Mechanism'
design'

Inter4'
dependent''

risks'

Threat''
assessment'&'
diagnos%cs'

Robust'
Networked'
control'

System'–'
Security'
co4design'

Demosthenis*Teneketzis*

Galina*Schwartz*

Asuman*Ozdaglar*

Saurabh*Amin*

Shankar*Sastry*

Hamsa*Balakrishnan*

Dawn*Song*

Gabor*Karsai*

Ian*Hiskens*

Alexandre*Bayen*

Janos*SzBpanovits*

Claire*Tomlin*

Xenofon*Koutsoukos*

Collaborative Research: MIT, UC Berkeley, UMich, Vanderbilt University
Amin (MIT) FORCES October 26, 2015 2 / 46



FORCES motivation: Resilient CPS

Attributes
1 Functional correctness by design
2 Robustness to reliability failures

(faults)
3 Survivability against security failures

(attacks)

Tools [Traditionally disjoint]
I Resilient Control (RC) over

sensor-actuator networks
I Economic Incentives (EI) to influence

strategic interaction of individuals
within systemic societal institutions

Cyber-Physical Systems (CPS)
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Reliability failures

Local disruptions to cascading failures (blackouts)

weather events ⇒ limited situational awareness ⇒ inadequate operator
response ⇒ network failures
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Security failures: cyber-attacks & Stuxnet

Maroochy Shire sewage plant (2000)

Tehama Colusa canal system (2007)

Los Angeles traffic control (2008)

Cal-ISO system computers (2007)
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Failures in CPS

I Simultaneous faults [reliability failures]
I Common-mode failures
I Random failures due to nature
I Operator errors

I Simultaneous attacks [security failures]
I Targeted cyber-attacks
I Non-targeted cyber-attacks
I Coordinated physical attacks

I Cascading failures
I Failure of nodes in one subnet ⇒ progressive failures in other subnets

Observation #1:
Due to cyber-physical interactions, it is extremely difficult to distinguish
reliability & security failures using imperfect diagnostic information.
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Operations and control of CPS

I Multi-agent systems (e.g., infrastructure control systems with
multiple entities)

I Agents have different information about CPS (both private and
public uncertainties)

I Agents are strategic and have different objectives
I Need to coordinate or influence the agents’ strategies so as to

maximize the CPS’ utility to its users

Observation #2:
Asymmetric information and strategic behavior are key features of CPS.
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Robust Control (RC) and Economic Incentives (EI)

Separation of RC and EI is not suited for CPS resilience

RC tools
I Threat assessment & detection
I Fault-tolerant networked control
I Real-time / predictive response
I Fundamental limits of defenses

EI tools
I Incentive theory for resilience
I Mechanisms to align individually

optimal allocations with socially
optimum ones

I Interdependent risk assessment

Sensor Actuator

Network 

Physical Infrastructures

Buildings

Transportation
Water & Gas

Electric Power

Detection and Regulation

Control Network

Diagnosis, Response, and Reconfiguration

Reliability and Security Risk Management

Attacks Defenses Faults

Internet
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FORCES research plan: hierarchical approach

Upper layer
I How the collection of CPS’s agents deal

with external strategic adversary(-ies)
I Network games that model both security

failures and reliability failures

Middle layer
I How strategic agents contribute to CPS

efficiency and safety, while protecting
their conflicting individual objectives

I Joint stochastic control and
incentive-theoretic design, coupled with
the outcome of the upper layer game

Lower layer
I Control at each individual agent’s site.

Lower layer
Control Theory

Middle

Lower layer
Local Control
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This talk: Upper hierarchical layer

Game with security failures

Game played on a graph representing the
topological structure of CPS
I Attacker: Strategic adversary
I Defender: CPS network designer Lower layer

Control Theory

Middle

Lower layer
Local Control

Amin (MIT) FORCES October 26, 2015 10 / 46



Related work

Control of networks
I S. Low, N. Li, J. Lavaei: Distributed control and optimization
I F. Bullo, F. Dörfler: Distributed control, oscillations, microgrids
I P. Khargonekar, K. Poolla, P. Varaiya: Selling random wind
I K. Turitsyn, I. Hiskens: Distributed optimal VAR control

Resilience and security of networked systems
I H. Sandberg, K. Johansson: Secure control, networked control
I R. Baldick, K. Wood, D. Bienstock: Network Interdiction, Cascades
I T. Başar, C. Langbort: Network security games
I J. Baras: Network security games and trust
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Outline: Network security games (upper layer)

1 Distribution network control under node disruptions

2 Network flow routing under link disruptions

Devendra Shelar Mathieu Dahan
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Model of DER disruptions

Vulnerability(-ies) published by EPRI

Substation

Transmission linesGeneration

Control Central

Distribution
lines

Typical communication

New communication
requirenments

I Hack substation communications
I Introduce incorrect set-points and

disrupt DERs
I Create supply-demand mismatch
I Cause voltage & freq. violations
I Induce cascading failures
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Main questions

When malicious entities (or random failures) compromise DERs/PVs:

I How to perform security threat assessment of distribution networks
under DER/PV disruptions?

I How to design decentralized defender (network operator) strategies?
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Attacker-defender interaction

Stackelberg game model (bilevel optimization)
I Leader: Attacker compromises a subset of DERs/PVs;
I Follower: Defender response via network control.

Problem statement:
I Determine worse-case attack plan (compromise DERs/PVs) to

induce:
I loss of voltage regulation
I loss due to load shedding

I loss of frequency regulation [esp., for large PV installations]
I Best defender response (reactive control):

I Non-compromised DERs provide active and reactive power (VAR)
I Load control: demand at consumption nodes may be partly satisfied
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Network model

Tree networks
I G = (N ,E) - tree network of nodes and edges
I νi = |Vi |2 - square of voltage magnitude at node i
I `ij = |Iij |2 - square of current magnitude from node i to j
I zij = rij + jxij - impedance on line (i , j)
I Pij ,Qij - real and reactive power from node i to node j
I Sij = Pij + jQij - complex power flowing on line (i , j) ∈ E

V0

P01,Q01

Vi

Pij ,Qij

Vj Vy

Py ,Qy

Vk Vl Vz

Pik ,Qik
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Power flow and operational constraints

I Generated power: sgi = pgi + jqgi
I Consumed power: sci = pci + jqci
I Power flow

Pij = ∑
k :j→k

Pjk + rij`ij +pcj −pgj

Qij = ∑
k :j→k

Qjk + xij`ij +qcj −qgj

νj = νi −2(rijPij + xijQij ) + (r2ij + x2ij )`ij

`ij =
P2

ij +Q2
ij

νi

I Voltage (and frequency limits)

ν i ≤ νi ≤ ν̄i and f ≤ f ≤ f̄

I Maximum injected power

−
√

sg2i − (pgi )2 ≤ qgi ≤
√

sg2i − (pgi )2
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Attacker model
Attacker strategy: ψ = (δ, p̃g, q̃g)
I δ is a vector, with elements δi = 1 if DER i is compromised and zero otherwise;
I p̃ga : Active power set-points induced by the attacker;
I q̃ga : Reactive power set-points induced by the attacker.

I Satisfy resource constraint
n
∑

i=1
δi ≤M (attacker’s budget)

Change on set-
points due to the
attack

Power injected by each DER constrained by:

−
√

sg2i − (p̃ga
i )2 ≤ q̃ga

i ≤
√

sg2i − (p̃ga
i )2
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Defender model

Defender response: φ= (γ, p̃gd , q̃gd )

I γ ∈ [0,1] the portion of controlled loads;

I p̃gd : New active power set-points set by defender;
I q̃gd : New reactive power set-points set by the defender.

New set-points are
obtained for the
noncompromised
DERs.

Power injected by each DER constrained by:

−
√

sg2i − (p̃gd
i )2 ≤ q̃gd

i ≤
√

sg2i − (p̃gd
i )2

How to choose the defender response (set-points)?
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Losses

I Loss of voltage regulation

LLOVR ≡max
i∈N0

wi(ν i −νi)+

I Cost incurred due to load control

LLL ≡ ∑
i∈N0

Ci(1−γi)

Composite loss function

L(ψ,φ) = LLOVR +LLL
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Problem statement

Find attacker’s interdiction plan to maximize composite loss L(ψ,φ),
given that defender optimally responds

max
ψ

min
φ

(
max
i∈N0

wi(ν i −νi)+ + ∑
i∈N0

Ci(1−γi)

)

s.t. Power flow, DER constraints, and resource contraints

I Can add loss of frequency regulation LLOFR ≡ w̃(f dev − fdev )+

This bilevel-problem is hard!
I Outer problem: integer-valued attack variables
I Inner problem: nonlinear in control variables
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Simple case

For a fixed defender choice and ignoring loss of freq. regulation:

max
δ

(
max
i∈N0

wi(ν i −νi)+

)

s.t. Power flow, DER constraints, and resource contraints

Results for this simple case also extend to the case when R/X ratio is
homogeneous and defender responds with only DER control.
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Precedence description

0 a b c i m

e d k

g j

In the above figure

I j ≺i k : Node j is before node k with respect to node i

I e =i k : Node e is at the same level as node k with respect to node i

I b ≺ k : Node b is before node k because b is ancestor of k
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Optimal interdiction plan

Theorem
For a tree network, given nodes i (pivot), j ,k ∈N0:

I If DGs at j ,k are homogenous and j is before k w.r.t. i , then DG disruption
at k will have larger effect on νi at i (relative to disruption at node j);

I If DGs at j ,k are homogenous and j is at the same level as k w.r.t. i , then
DG disruptions at j and k will have the same effect on νi at i ;

Let νold
i /νnew

i be |Vi |2 before/after the attack

∆(νi ) = νold
i −νnew

i

∆j (νi )<∆k(νi )

∆e(νi )≈∆k(νi )
0 a b c i m

e d k

g j

j ≺i k
e =i k
b ≺ k
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Computing optimal attack: fixed defender choices

1: procedure Optimal Attack Plan
2: for i ∈N0 do
3: for j ∈N0 do
4: Compute ∆j(νi)
5: end for
6: Sort js in decreasing order of ∆j(νi) values
7: Compute J∗i by picking js corresponding to top M ∆j(νi)

values.
8: end for
9: k := wi argmini∈N0 νi −∆J∗i (νi)

10: return J∗ := J∗k (Pick J∗i which violates voltage constraint the
most)

11: end procedure

I O(n2log n)
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Greedy algorithm for optimal attack: defender response

Compute φ given δ
for problem CLPF (δ)

Compute δ given φ
for the problem FDR(φ)

δ ∈ ds ?

iter > max ?

timeout

δ

φ

δ

no

yes

success

failure

no

yes

δ∗, φ ∗

δ∗ = 0, φ ∗ = 0
L∗ = 0, iter = 0
δ = 0, φ = 0, ds = {}

if L(δ, φ) > L∗?
then δ∗ = δ, φ∗ = φ

δ

φ

ds = ds ∪ {δ}
iter = iter + 1

δ

δ
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Main results

I Results using greedy algorithm compare very well with results from
(more computationally intensive) brute force and Bender’s cut;

I Optimal attack plans with defender response (using both DER
control and load control) show downstream preference;
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Effect of attack on loss of voltage regulation

Optimal defender response under DER/PV disruptions
I Voltage regulation can be improved by selective load control
I If load control is costly, defender permits loss of voltage regulation
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Effect of attack on cost of load control

Optimal defender response under DER/PV disruptions
I For small intensity attack, load control limits losses
I For high intensity attack, load control not effective
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Secure network designs: which DERs/PVs to secure?

0

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

0

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Design 1 Design 2

Theorem
A homogeneous DN with optimally secure PVs has following properties:
I If any PV node is secure, secure all its child nodes
I At most one intermediate level with both vulnerable and secure

nodes
I In this intermediate level, secure nodes uniformly at random
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Resilient defender response

Desirable properties of defender response:
1 Security: Centralized control strategy undesirable if CC-SS

communication is vulnerable
2 Compensation to owners: Upstream DERs/PVs likely to be owned

by distribution utilities ⇒ ↑ costs when set-points change for larger
DERs (esp. ↓ real power production)

3 Flexibility: Topology of DNs might be variable across time:
configuration of worst affected nodes may change.

We propose a decentralized control strategy and find new set-points for
non-compromised nodes using
I Information: local measurements (voltage & freq.) and location of

the node with lowest voltage;
I Diversification: each node contributes either to voltage or to

frequency regulation.
Amin (MIT) FORCES October 26, 2015 31 / 46



Decentralized defender response
Theorem: Node diversification

Attacker-Defender interaction

I Attacker: disrupt DERs at 1, 5, 6

I Critical node 3 partitions network:
I Subnet 1: control frequency
I Subnet 2: regulate voltage.

I Defender: New set-points

Approach

I Resource-constrained attacker: loss
of voltage & freq. regulation

I Worst-case attacks (maximin)

I Compute defender response
(Distributed control)
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Summary: network control under node disruptions
Questions
I How to assess vulnerability of electricity networks to disruptions of

Distributed Energy Resources (DERs)?
I How to design decentralized defender (network operator) strategies?

Approach
Attacker-defender model; Network interdiction formulation;
Characterization of worst-case attacks; Defender strategies
Results
I Interdiction model captures threats to DERs / smart inverters;
I Structural results on worst case attacks that maximize voltage

deviations and / or frequency deviation from nominal operation;
I Efficient (greedy) technique for solving interdiction problems with

nonlinear power flow constraints;
I Ongoing: Distributed defender control strategy (uses measurements

and knowledge of worst affected node).
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Outline: Network security games (upper layer)

1 Distribution network control under node disruptions

2 Network flow routing under link disruptions
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Network flow optimization problems

Max-flow problem

(P1) : maximize F(x)

subject to x ∈ F ,

I F(x) : Value of flow x

Max-flow w/ min-transportation cost

(P2) : minimize C1(x)
subject to x ∈ F

F(x)≥ F(x ′) , ∀x ′ ∈ F

I C1(x) : Cost of transporting flow x

Max-flow min-cut theorem: the maximum value of an s− t flow is
equal to the minimum capacity over all s− t cuts.

s
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Example

I What if the network is under strategic link disruptions?

s

1

2

t

xs1 = 2

x12 = 1

x2t = 2xs2 = 1

x1t = 1

Initial flow and attack.

s

1

2

t

xµs2 = 0

xµ1t = 0xµs1 = 1

xµ12 = 1

xµ2t = 1

Resulting effective flow

Is it possible to extend classical network optimization results to
strategic environments? If so, what are the structural properties?
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Our focus

Network routing when the operator faces strategic link disruptions

Simultaneous non-zero sum game
I Both transportation and attack costs
I Attacker simultaneously disrupts multiple edges
I Defender strategically chooses a flow but no re-routing after attack.

Main contributions
I Structural insights on the set of Nash equilibria
I Relation to classical network routing problems
I Network vulnerability under strategic attacks
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Game

Γ := 〈{1,2},(F ,A),(u1,u2)〉

I Directed graph G = (V,E), and for every (i , j) ∈ E :
I Edge capacity cij .
I Edge transportation cost bij .

I Player 1 (Defender) chooses a feasible flow x ∈ F .
I Player 2 (Attacker) chooses the edges to disrupt through an attack
µ ∈ A.

∀(i , j) ∈ E , µij =

{
1 if (i , j) is disrupted,
0 otherwise.

I Given a flow x and an attack µ, xµ is the effective flow.
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Payoffs

Γ := 〈{1,2},(F ,A),(u1,u2)〉

I 1 single s− t pair.

u1(x ,µ) = p1 F(xµ)︸ ︷︷ ︸
amount of effective flow

− C1(x)︸ ︷︷ ︸
transportation cost

u2(x ,µ) = p2 F(x − xµ)︸ ︷︷ ︸
amount of lost flow

− C2 (µ)︸ ︷︷ ︸
cost of attack

I Mixed-extension:

U1(σ1,σ2) = E[u1(x ,µ)], U2(σ1,σ2) = E[u2(x ,µ)]

where (σ1,σ2) ∈∆(F)×∆(A)

I SΓ is the set of Nash Equilibria.
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Simplification

Assumption
There exists a max-flow with min-transp. cost, x∗, that only takes s− t
paths that induce the lowest marginal transportation cost, denoted α.

s
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t

0,1,3
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1,1,1

2,2,1
1,1,1
1,1,1 1,1,1

1,1,1

1,1,2

I α= 3

I Simplifying assumption without any loss of generality.
I α plays an important role in the results.

What properties does SΓ satisfy?

Amin (MIT) FORCES October 26, 2015 40 / 46



Regimes

p10 α

p2

1
supp(σ1

∗
) = {x0}

supp(σ2
∗
) = {µ0} supp(σ1

∗
) = {x∗}

supp(σ2
∗
) = {µ0}

supp(σ1
∗
) = {x0,x∗}

supp(σ2
∗
) = {µ0,µmin}

I

II

III
(mixed NE)

(pure NE)

(pure NE)

Proposition (Regime III)
If p1 > α and p2 > 1, then Γ has no pure NE. Furthermore,
∃σ0 = (σ10,σ

2
0) ∈ SΓ such that U1(σ10,σ

2
0) = U2(σ10,σ

2
0) = 0. σ0 is defined

by:

I σ1x0 = 1−
1
p2
, σ1x∗ =

1
p2
,

I σ2µ0 =
α

p1
, σ2µmin = 1−

α

p1
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Necessary conditions

Attacker strategy σ2∗ and max-flow with min-transp. cost problem

For any NE (σ1
∗
,σ2
∗
), any µ in the support of σ2∗ disrupts edges that

are saturated by every max-flow with minimum transportation cost.

∀(σ1
∗
,σ2
∗
) ∈ SΓ, ∀µ ∈ supp(σ2

∗
), ∀(i , j) ∈ E , µij = 1 =⇒∀x∗ ∈ Ω2, x∗ij = cij

Example: every path induces the same transportation cost.
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Necessary conditions

Defender strategy σ1∗ and min-cuts

For every NE (σ1
∗
,σ2
∗
), any edge of any min-cut must be taken by at

least one flow x in the support of σ1∗.

∀(σ1
∗
,σ2
∗
) ∈ SΓ, ∀ min-cut E ({S ,T}), ∀(i , j) ∈ E ({S ,T}),

∃x ∈ supp(σ1
∗
) | xij > 0

Example:
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Main Results

Θ1 = F(x∗): Optimal value of the max-flow problem.
Θ2 = C1(x∗): Optimal value of the max-flow min-cost problem.

Theorem: Regime III
If p1 > α, p2 > 1, and under Assumption 1, then for any σ∗ ∈ SΓ:

1 Both players’ equilibrium payoffs are equal to 0, i.e.:

U1(σ1
∗
,σ2
∗
)≡ 0, U2(σ1

∗
,σ2
∗
)≡ 0

2 The expected amount of flow sent in the network is given by:

Eσ∗ [F(x)]≡
1
p2

Θ1

and the expected transportation cost is given by:

Eσ∗ [C1(x)]≡
1
p2

Θ2
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Main Results

Θ1 = F(x∗): Optimal value of the max-flow problem.
Θ2 = C1(x∗): Optimal value of the max-flow min-cost problem.

Theorem: Regime III
3 The expected cost of attack is given by:

Eσ∗ [C2 (µ)]≡Θ1−
1
p1

Θ2 =

(
1−

α

p1

)
Θ1

4 The expected amount of effective flow (that reaches t) is given by:

Eσ∗ [F(xµ)]≡
1

p1p2
Θ2

Eσ∗ [F(xµ)] decreases with both p1 and p2!
5 The yield is given by:

Eσ∗ [F(xµ)]

Eσ∗ [F(x)]
≡

Θ2

p1Θ1
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Summary: network routing under link disruptions

Results
I Modeled a simultaneous non-zero sum network game
I Obtained structural insights on the NE
I Related the NE to max-flow min-cost and min-cut
I Determined the vulnerability of a graph under strategic attack

Ongoing
I Nash equilibria (NE) of the one-stage game within the class of

mixed strategies under link disruptions caused due to either reliability
or security failures

I Equilibria for the finitely or infinitely repeated game
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