

A CPS agenda for Europe

Martin Törngren Professor in Embedded Control Systems, ICES director Division of Mechatronics, KTH – Royal Institute of Technology

www.cyphers.eu - Fp7 support action, July 2013- Feb. 2015

Purpose: develop a strategic CPS agenda for Europe, including comprehensive recommendations for action

CPS technology, Market model, Domain analysis, ... Recommendations

Acknowledgement: This talk reflects collaborative work with Victoria Cengarle, Holger Pfeiffer, Bernhard Schätz, Fortiss/TUM); John McDermid (Univ. Of York), Roberto Passerone (Trento); Saddek Bensalem (Univ. Joseph Fourier) and Alberto Sangiovanni Vincentelli (Trento/UCB)

Industrie 4.0 – CPS as an organizational paradigm shift

A COMPANY AND A DESCRIPTION OF A DESCRIP

		010001101 010001101 001010100 10010100 010011010	4. Industrial Revolution based on Cyber-Physical Production Systems Industry 4.0
	4	3. Industrial Revolution through Introduction electronics and IT for further automization of production	Ition of a Industry 3.0
First Mechanical Loom 1784	2. Industrial Revolution through introduction of mass production based on the division of labour powerde by electrical energy		Industry 2.0
1. Industrial Revolution through introduction of mechanical production facilities powered by water and steam	,		Industry 1.0
End of 18th Century	Start of 20th Century	Start of too 70ies	lay t

Manufacturing evolution

Current Focus:

- Cloud manufacturing
- Human-robot collaboration
- Programming-free machine control
- Additive manufacturing
- Sustainable manufacturing

Courtesy of Lihui Wang, KTH

Indication of a paradigm shift – new players

theguardian TheObserver

 $\text{CNET} \rightarrow \text{ Internet} \rightarrow \text{ Google closes $3.2 billion purchase of Nest}$

Google closes \$3.2 billion purchase of Nest

The acquisition brings with it the Learning Thermostat and the Protect smoke and CO detector as Google looks to make its mark in the smart home.

by Lance Whitney @lancewhit / February 12, 2014 5:00 AM PST / Updated: February 12, 2014 5:19 AM PST

Google's drive into robotics should concern us all

The company's expansion into robotics was developed in tandem with the US military. Where will its power play stop?

John Naughton The Observer, Sunday 29 December 2013

Google's robotic cars have about \$150,000 in equipment including a \$70,000 LIDAR (laser radar) system. The range finder mounted on the top is a <u>Velodyne</u> 64-beam laser. This laser allows the vehicle to generate a detailed 3D map of its environment. The car then takes these generated maps and combines them with high-resolution maps of the world, producing different types of data models that allow it to drive itself.

Search

KTH VETENSKAP OCH KONST	The "Cyber Physical" Gap – Examples					
	organi- zational IT processes	Software-Based CPS Functionality	ES physical processes			
	Dimension	"Cyber Domain"	"Physical Domain"			
	Example Disciplines	Logistics	Aeronautics			
	Typical Life Cycle	< 2-3 Year	> 10-30 Years			
	Business Model	Dynamic Value Network	Static Supply Chain			
	Development Approach	Continuous Delivery	Implement-Commission- Operate –Decommission			
	Dependability Focus	Security	Safety (and certification)			
	Platform Approach	Max. virtualization/Cloud	Min. virtualization/RTOS			
	Example Technologies	Big Data, Online Learning	Control Synthesis			

Cyber-physical systems (~2006)

Integration of computation, networking and physical processes where CPS range from minuscule (pace makers) to large-scale (e.g. national power-grid).

Not new but

- Increasing level of integration and capabilities
 - Physical Embedded Networking IT
- Confluence: Consumer products \Leftrightarrow Industrial products
- Business model evolution; servitization

Unprecedented opportunities and societal reliance

CPS will change the way entire industries operate

Smart water

Water

Energy

Apply monitoring and management technologies to help optimize the availability, delivery, use, and quality of water as well as related systems including energy and chemical treatment. Smart traffic

Use real-time traffic prediction and dynamic tolling to reduce congestion and its byproducts while positively influencing related systems.

Smart energy

Analyze customer usage and provide customized products and services that help to boost efficiency from the source through the grid to the end user.

- Characterization aspects:Scale of integration
 - **Technical emphasis**
 - **Cross-cutting aspects**
 - Level of automation

Smart home

CPS and relation to other concepts

CyPhERS recommended focus areas

- Multidisciplinary research
- Accelerate technology maturation
- Interoperability of technology
- Education and life-long learning
- Business models and open innovation
- Raise societal awareness
- Trustworthiness

The above include legislation and liability

Science and technology (example highlights)

- Enabling sciences!
- Strengthen cross-disciplinary interactions
 - Human-machine interaction: behavioral science and technical disciplines from ergonomics to modeling human behavior
- System level design methodologies with supporting platforms
 - Correct by construction
 - Systematic and efficient V&V
- Interoperability standards (horizontal, cross-domain)

Market aspects

- Open Innovation
 - Need collaboration!!!
 - Open standards, Open data, Open source/license
- Servitization: Anticipation of business models addressing value-added services besides tangible assets.
 - Liability frameworks
 - Forums and eco-systems

Social

•the organisational and wider context of CPS (regulations, attitudes)

Process

• "business" processes enabled by the CPS and information

Information

•information arising from sensors, other systems, internet, etc.

Technology

• computing, communication, sensing, actuation, power, ...

CPS education and training (highlights)

Paradigm shift motivates extra efforts for revising programs

• Increasing space of knowledge and skills!

Balances and the concept of synergy:

- Depth vs. Breadth, Theory-Practice-Com. skills
- Academia and industrial collaboration

Life-long learning

Sustainability, privacy and ethics

Improving the status of teaching

From disciplinary to "Pi-shaped" people that are ready to engineer!

Find a suitable balancing – for the T-shape - depth vs. breadth, Teach experts, with various expertise, able to synergistically work with other experts.

CPS characterization - summary

- Scale of integration and emphasis
 - Physical, embedded, networking and IT systems
 - Life-cycle, Domains
- Cross cutting aspects: properties, jurisdiction, governance
- Level of automation
- CPS, IoT, Industrial Internet, Industrie 4.0 etc. different perspectives to integration and software intensive systems
- An "organizational" paradigm shift

Key messages

Cyber-Physical Systems (CPS)

- Integrate physical, embedded, networking and IT systems
- Bridge disciplines, domains & life-cycles

CPS, IoT, Industrial Internet, Industrie 4.0 etc.

- Provide different perspectives to similar phenomena
- Characterization helps to clarify system of interest

CPS are sociotechnical systems

- Unprecedented opportunities for innovation
- Disruptive changes in both economical and societal sense
- Corresponding challenges, barriers and threats
 - Education, Research and Collaboration

See CyPhERS agenda here: www.cyphers.eu