

SAAB CPS CHALLENGES

With a focus on Education & Training

Erik Herzog, Ph.D., SAAB Technical Fellow – Systems Engineering

OPEN| NOT EXPORT CONTROLLED | NOT CLASSIFIED 2 Erik Herzog] © Saab

SAAB - THE DOMAIN

WHAT IS THIS?

THEN, WHAT IS THIS?

EXAMPLE SYSTEM PROPERTIES

INDUSTRIAL DEVELOPMENT CHALLENGES

- Formal models, simulations results, proofs matter little if we aren't in agreement on what we are building
- Safety analyses, no matter how elaborate, of a system we do not intend to build has little value
- Parts built, but not compatible in the intended configuration has little utility even though they may be fully verified
- The merit of the design solution is low if it can be maintained

 Mastering development is not about improving domain engineering methods but methodology for understanding and communicating system design

THE SIGNIFICANCE OF CPS

- Swedish industry is strong in many traditional industry domains
 - Mature markets, competition is tough
- CPS, IoT & Co allow for the creation of completely new, disruptive systems by combining and integrating solutions from (previously) disconnected domains
 - New paradigms may strangle established organisations in short time
 - And provides great opportunities for new entrants
- CPS development organisations will grow in terms of engineering competencies covered
- CPS will increase the reliance on documentation and engineering communication for capturing and understanding the properties of the evolving system
 - A barried for embrasing the potential of CPS in traditional industries

CONCLUSION

- The main CPS challenge is not about sharpening the domain analysis tools and methods, but about
- Enabling communication across the engineering disciplines in an organisation developing CPS

SAMPLE SYSTEM PROPERTIES

Ø

- Accessibility
- Accountability
- Adaptability
- Administrability
- Affordability
- Agility
- Availability
- Capability
- Composability
- Configurability
- Compatibility
- Demonstrability
- Deployability
- Durability

Extensibility

Executability

- Evolvability
- Fidelity
- Flexibility
- Functionality
- Integratability
- Interoperability
- Interpretability
- Maintainability
- Manageability
- Mobility
- Modifiability
- Operability

- Performability
 - Portability
 - Practibility
 - Practicality
 - Predictability
 - Producibility
 - Recoverability
 - Reliability
 - Repeatability
 - Responsibility
 - Reusability
 - Scalability
 - Serviceability
 - Stability

- Supportability
 - Suitability
 - Survivability
 - Tailorability
 - Testability
 - Traceability
 - Trainability
 - Transportability
 - Trustability
 - Understandability
 - Upgradability
 - Usability
 - Verifiability
 - Vulnerability

CPS EDUCATION

OPEN| NOT EXPORT CONTROLLED | NOT CLASSIFIED | 11 Erik Herzog| © Saab |

THE NEW RECRUITS

Ecomics, HR, Law, ...

OPEN| NOT EXPORT CONTROLLED | NOT CLASSIFIED 12 Erik Herzog| © Saab

CONTINUOUS COMPETENCE DEVELOPMENT

- Internal training programs
- General Systems Engineering courses
 - 6-20h training
 - INCOSE CSEP preparation courses
 - 20 students/year
- Dedicated courses in
 - Safety
 - ILS
 - Architecture
 - ...
- In this area we are missing a partner that can offer more in depth training in systems engineering subjects
 - And provide a meeting space for people and organisations with similar challenges

RESEARCH

- Many of our research projects are systems related
- When placed at non-systems institutions a lot of time and energy is required to adapt to the academic tradition of that institution
 - Difficult to take advantage and build on earlier research

Lifecycle management	Verification & Validation of heterogeneous systems System of systems		
Requirements management	Systems thinking	System integration	Systems architecting and design
Reliability, Availability & Maintainability Systems engineering System safety			
Operations analysis	1	U U	System modelling & simulation
Configuration management	Multi-disciplinary Human system integr	trade studies ation Devel	opment of heterogeneous systems

QUESTIONS?

