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Witsenhausen'intrinsic Model

A decentralized control system is callselquentialif there is a pre-defined
order in which the decision makers (DMs) act. The model ctesif:

o A collection of space$Q, F, (U',u"), (Y',)'),i € N}, specifying the
system’s control and measurement spaces which are assarbed t
standard BorelN = |\/| is the number of control actions taken. Recall
that astandard Borel spacis a subset of a complete, separable and
metric space.

e A measurement constrainthe Y'-valued observation variables are
given byy = 7' (w,u™"),u™" = {U k <i—1}.

o Adesign constrainty = {772, ...,/N}: U = 4/(y), with
y = 7' (w,u"), andy', ' measurable functions. L&t denote the set of
all admissible policies for DM andT" = [], T'*.
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Characterization of information structures

@ A sequential team istatig if the information available at every decision
maker is only affected by exogenous disturbances (Nattha)js no

other decision maker can affect the information at any goecision
maker.
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A sequential team istatic if the information available at every decision
maker is only affected by exogenous disturbances (Nattiva)js no
other decision maker can affect the information at any goecision
maker.

A sequential team problem dynamicif the information available to at
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Characterization of information structures

@ A sequential team istatig if the information available at every decision
maker is only affected by exogenous disturbances (Nattiva)js no
other decision maker can affect the information at any goecision
maker.

@ A sequential team problem dyynamicif the information available to at
least one DM is affected by the action of at least one other DM.

e AnlIS{y,1<i < N}isclassicalif y contains all of the information
available to DMk for k < i.

e An IS isquasi-classicabr partially nestedif wheneveru, for some
k < i, affectsy, y containsyX.

@ An IS which is not partially nested isonclassical
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Optimal Policies

Lety = {71, ... ’7N}, and a cost function be defined as:

J(l) = E[C(w07 U)],

for some non-negative loss (or cost) functon) x HkUk - R.
Definition

For a given stochastic team problem with a given informastmcture,
{3T'i € N}, a policy (strategy) N-tuple* := (41", ...,4N") is an optimal
team decision rule if

Ay') = inf Iy = I
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Optimal Policies

Definition

S

An N-tuple of strategies* := (v, ...,4N") constitutes a person-by-perso
optimal (pbp optimal) solution) if, for alp € T' and all i € A/, the following

inequalities hold:
J*:=3(y*) < Iy, B),

where

(™ 8) =" LB Y. (1)
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Witsenhausen’s equivalent model and static reduction
sequential dynamic teams

Following Witsenhausen’88, we say that two informatiomstures are
equivalent if:
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Witsenhausen’s equivalent model and static reduction
sequential dynamic teams

Following Witsenhausen’88, we say that two informatiomstures are
equivalent if:

(i) The policy spaces are isomorphic in the sense that gslichder one
information structure are realizable under the other imfation structure,

(i) the costs achieved under identical policies are idmtlmost surely and
(iii) if there are constraints in the admissible policidse tsomorphism among
the policy spaces preserves the constraint conditions.
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Witsenhausen’s equivalent model and static reduction
sequential dynamic teams

Witsenhausen shows that a large class of sequential tedtepre admit an
equivalent information structure which is static. Thisadled thestatic
reductionof an information structure.

Earlier, for partially observed (or quasi-classical) mf@tion structures, a
similar reduction was studied by Ho and Chu('72) in the crinté LQG
systems and a class of invertible non-linear systems.

An equivalence between sequential dynamics teams andstaéo reduction
is as follows.
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Witsenhausen’s equivalent model and static reduction
sequential dynamic teams

Consider a dynamic team setting according to the intrinsadehwhere there
areN time stages, and each DM obserwgs= ny(w, ut, 12, - - -, uk-1), and
the decisions are generatedy= ~x(y¥). The resulting cost under a given
team policy is)(y) = E[c(w, y, u)], wherey = {y k € N'}.

This dynamic team can be converted to a static team provintegivery

t € NV, there exists a functiof; for all S

Py € Sw,ut, - uh) = /ft(w,ul,uz,m UL Q(dy).
s
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Witsenhausen’s equivalent model and static reduction
sequential dynamic teams

We can then write

N

P(dw, dy) = P(dw) [ ] felwo, ut, U%, -+ , i~ y) Qu(dy).

t=1

The cost functiord(y) can then be written as

6

(ft(ytv wo, ula u2’ T ut_l? yt)Qt(dyt))C(w? Y, U), (2)

==

3) = [ Piev)

_.
Il
NN

where now the measurement variables can be regardedeggs=ndenand by
incorporating the(f; } terms intoc, we can obtain an equivalestatic team
problem. Hence, the essential step is to appropriatelysattje probability

space and the cost function.
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Strategic Measures, Convexity Properties, and Optimz
Solutions

We can view a measurable policy as a special case of randompitieies.
This interpretation has many useful properties, one bdiaddpological use
of the space of probability measures.
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Strategic Measures, Convexity Properties, and Optimz
Solutions

We can view a measurable policy as a special case of randompitieies.
This interpretation has many useful properties, one bdiaddpological use
of the space of probability measures.

For stochastic control problemstrategic measurefSchal’75,
Dynkin-Yushkevich’79, Feinberg’'96) are defined as the $grrabability
measures induced by admissible control policies.

In the following, we discuss the case for stochastic tearblpros.
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Strategic Measures, Convexity Properties, and Optimz
Solutions

Let La(i) be the set of strategic measures induced by all admissite te
policies with(w,y) ~ p. In the following,B = B® x [, BX are used to denote
all the Borel sets if2 x [, UK,

La(p) = {P € P(Q X ﬁ(Yk X IU")) :

k=1

P(B) _ /M(dw, dy) H 1{uk:’yk()/'()€Bk}77k = Fk} (3)
k
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Strategic Measures, Convexity Properties, and Optimz
Solutions

Let Lr(t) be the set of strategic measures induced by all admissite te
policies withw,y ~ p with individually randomized policies (that is, with
independent randomizations):

La(r) = {P e P(kaf[lwkxwk)) P8 = [ u(doy 1;[Hk<dd<|yk>}

wherellX takes place from the set of stochastic kernels fidfiio U for each
k.
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Strategic Measures, Convexity Properties, and Optimz
Solutions

ConsiderY = [0, 1N and let

N
Le(n) = {P e P(ﬂ < T x tuk>) P(B) = [ 0(0aLaln @),

k=1

nerm]

Here,y(2) denotes a collection of team policies measurably parareetiy
ze T,
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Strategic Measures, Convexity Properties, and Optimz
Solutions

Finally, letLcr denote the set of strategic measures that are induced by so
common randomness and arbitrary independent randomness.

Ler(p) := {P € P(Q X ﬂ(v" X IU")) :

k=1

P(8) = [ ntdp(do.oy) [ eyt |
k

e I EEE— 16/68



Strategic Measures for Static Teams and Optimality o
Deterministic Policies

Theorem

@ (i) Lr has the following representation

Lr(y) = {PeP(QxH xtuk)o P®) = [ U(@LA12(2)
UeP(T),U(dw, -, dw) = [ [(dw), e € P[0, 1))}, (4)

that is U is constructed by the product of N independent ramgiariables.

@ (ii) Lc(p) is convex. Its extreme points form(lu). The sets k and Lcg are not
convex for general sequential teams.

@ infyerd(y) = mfPE,_A(M) J P(ds)c(s) = infpei () [ P(ds)c(s) =
infeei () J P( . Deterministic policies are optimal among all
_ 17168




Strategic measures for dynamic teams
Theorem

o (i) Lr(u) has the following representation so that for angRg(u),

P(B) - / U(dZLa(11(2)(B)

U(dva, -+ dw) = [ [ ns(dvs), ms € P([0, 1)}, (5)

wherer)s is the Lebesgue measure [)1] and~(2) is a collection of
deterministic policies parametrized by z.
o (ii)
inf J(y) = _inf )/P(ds)c(s) = inf )/P(ds)c(s)

Nel — PeLa(p PeLr(p

In particular, deterministic policies are optimal amongetrandomized

class.
. 18/68




Convexity of sets of Strategic Measures

Theorem
o If the sequential team is not classical (and not necessanly-classical),
the set of strategic measures is not convex.

o If the information structure is classical, and if randontzeolicies are
allowed so that, DM i has access th ¥, k < i and y, then the set of
strategic measures is convex.
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Existence of optimal team policies

Establishing the existence and structure of optimal pedics a challenging
problem.

More specific setups and non-existence results have bedirdin
Witsenhausen'69, Wu-Verdu’1l, Y.-Linder'12.

Considering the set of randomized strategic measures anvex@ication of
these measures allow for placing a useful topology, thatez#kiconvergence
of probability measures, on the strategy spaces.
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Existence of optimal team policies

Theorem

(i) Consider a static or dynamic team. Let the loss functidre dower

semi-continuous in,x1 and Lr(x) be a compact subset under weak topolo

Then, there exists an optimal team policy. This policy igmeinistic and
induces a strategic measure in.L

(if) Consider a static team or the static reduction of a dymateam with ¢
denoting the loss function. Let ¢ be lower semi-continuausu and L¢(u

be a compact subset under weak topology. Then, there eristgtanal team

policy. This policy is deterministic and induces a stratagieasure in h.

)

.

21/68
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Sufficient conditions for existence of optimal policies

Theorem (Gupta, Y., Basar, Langbort’15)

Consider a static team where the action sBtsi € A/ are compact.
Furthermore, if the measurements satisfy:

n

P(dylwo) = [] Q (@Y wo).

i=1

where Q(dy |wo) = 7' (Y, wo)v' (dy) for some measure and continuous;
that satisfy that for every > 0,36 such that if da, b) < ¢:
7' (b, wo) — 7' (a,wo)| < eh(a,wo), with sup,, [ h'(a,wo)r (dy) < oo, and

o

c(wo, U) is continuous, then the seglu) is weakly compact and there exist
an optimal team policy (which is deterministic and henceA(d)).
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Existence of optimal team policies: Proof Sketch

The existence result also applies to static reductionseiguantial dynamic
teams, and a class of teams with unbounded cost functions@amdompact
action spaces.
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Existence of optimal team policies: Proof Sketch

The existence result also applies to static reductionseiguantial dynamic
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The issue is the closedness property of the set of strategisumes achieved
by independent randomization: A sequence of conditiorfaibpability
measures may converge to a limit which is not conditionaityependent.
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Existence of optimal team policies: Proof Sketch

The existence result also applies to static reductionseiguantial dynamic
teams, and a class of teams with unbounded cost functions@amdompact
action spaces.

The issue is the closedness property of the set of strategisumes achieved
by independent randomization: A sequence of conditiorfaibpability
measures may converge to a limit which is not conditionaityependent.
The proof builds on the fact that, conditioned on the chapnaberties, a
weak limit of a sequence of joint probability measures tlagisies condition
independent properties is also conditionally independent

Example for a channel which satisfies the desired contimpribperties is the
additive Gaussian channel = wg + V¥.

e I EEE— 23768



Dynamic Teams and Witsenhausen’s Counterexampl

The existence result applies for Witsenhausen’s courdenpie.

It is known that classical LQG team problems admit solutiwhich are
linear.

[Witsenhausen’68] showed that when there are measuyeaiid information
constraints leading to a non-classical information stmetthis result is no
longer true.

[Witsenhausen’68]: Even LQG problems may admits solutish&h are
non-linear.
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Witsenhausen’s Counterexample

w1
1
Yo ol o ﬂi > y» 1 Tul
> >
Zo U Z1 X9
Yo = Xo, Uo = po(Yo), X1 = Xg + Uo,
Y1 = X1 + Wy, u = p1(yr), X2 = X3 + Uj.

The goal is to minimize the expected performance index foredo> 0

Qw/(X, Uo, uy) = K(Uo)? + %5
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Witsenhausen’s Counterexample

This is the celebrated Witsenhausen’s counterexample.

It is described by a linear system; all primitive variables @aussian.

Yet optimal team policy is non-linear [Witsenhausen’68].
Witsenhausen established that a solution exists ([Wu+V&tid provided an
alternative proof using Transport Theory), and estabtighat an optimal
policy is non-linear.
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Witsenhausen’s Counterexample

Suppos& andw; are two independent, zero-mean Gaussian random varia
with variances? and 1. An equivalent representation is:

Uo = 7o(X), ur = y1(Up + w).
Quw/(X, Uo, U1) = K(Uo — X)? + (U — Uo)?, (6)
w1
x Uo Y Uy

—» Y0 —» — 71

Figure: Flow of information in Witsenhausen’s counterexample.
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Witsenhausen’s Counterexample

Now consider a different choice f&:

Qrc(X U, ur) = (o) + (ug — %),

where agairk > 0.

—» 70 —»

w1

Y
—>

Y1

()

Figure:Flow of information in Witsenhausen’s counterexample.
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Witsenhausen’s Counterexample

The version of this problem where the soft constraint isaegdl by a hard
power constraintE[(up)?] < k, is known as th&aussian Test Channel
(GTC).

In this contextyg is theencoderand~; the decodey where the latter’'s optimal
choice is the conditional mean »@yiveny, that isE[x|y].

The best encoder for the GTC can be shown to be linear (a seatsin of
the source outpuk), which in turn leads to a linear optimal decoder.

The approach here is through information theoretic argasnen
[Goblick’65][Berger'71].
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Now, consider the more general version of (7):

QaTc(X Uo, U) = K(Uo)? + (ug — X)? + boUiox,

Witsenhausen’s Counterexample

whereby is a scalar. In this case, an optimal solution is linear

(8)

[Bansal-Bacsar'87]. The difference between (8) and Whsaesen’s problem

is thatQ in the former has a product term between the decision ruldseof

two agents while here it does not.

L
—

Figure: Flow of information in Witsenhausen’s counterexample.

w1

70

U Yy
> —

71

Ui
>
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Witsenhausen’s Counterexample

Hence, it is not only the nonclassical nature of the inforamastructure but
also the structure of the performance index that determutether linear
policies are optimal in these quadratic dynamic decisiablgms with
Gaussian statistics and nonclassical information.
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Witsenhausen’s Counterexample

Hence, it is not only the nonclassical nature of the inforamastructure but
also the structure of the performance index that determutether linear
policies are optimal in these quadratic dynamic decisiablgms with
Gaussian statistics and nonclassical information.

Furthermore, the noise distribution is also crucial: If tlése variables are
discrete, it can be shown that the Witsenhausen’s courstengle does not
admit an optimal solution [Y.-Basar'13].
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Witsenhausen’s Counterexample

The static reduction of the Witsenhausen’s counterexam@dwo controller
static team where the observatiofisandy? of the two controllers are
independentzero-mean Gaussian random variables.

The control lawsy! and~? are to be chosen to minimize

J(,Yl’,YZ) _ E[(yl +ut— uz)z + (kul)Ze(y1+u1)(2y2—y1—u1)/2]

Theorem

The Witsenhausen’s counterexample admits an optimaliaolut

Also applies to: The LQG problem, the output feedback cémirablem, the
relay channel problem etc.
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Convexity of Static Team Problems

Definition
A (static or dynamic) team problem is convexIoif J(v) < oo forall y € T'
and for anya € (0,1),7,,7, € I':

‘](all + (1 - 04)12) S a‘](ll) + (1 — a)‘](lz)

Theorem

Consider a static team.(d) is convex if ¢w, u) is convex iru provided that

J(7) <ooforall y €T.
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Convexity of Static Team Problems

Thejoin of two o-fields over some sét is the coarsest-field containing
both. Themeetof two o-fields is the finest-field which is a subset of both.
In addition, letF; be thejoin of the o-field, that is7j = |J, F*.
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Convexity of Static Team Problems

Thejoin of two o-fields over some sét is the coarsest-field containing
both. Themeetof two o-fields is the finest-field which is a subset of both.
In addition, letF; be thejoin of the o-field, that is7j = |J, F*.

Let F' be theo-field generated by' and letF. = (", F* be the meet of these
fields, this is termed asommon knowledgey Aumann’76 for finite
probability spaces.
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Convexity of Static Team Problems

Theorem

(i)If a team problem is convex, thendtw, u)|F¢] is convex in u almost surely.
(i) If

Elc(w, u)| A]
is convex in u almost surely, then the team problem is convélenset of
team policies that satisfy(d) < oc.
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A generalization of Radner and Krainak et. al.’s theoren

Theorem

Let{J;T"',i €} be a static stochastic team problem wherfesUR™ i ¢, the
loss function (¢, )| ;] is convex and continuously differentiable in almos
surely, and Jv) is bounded from below on . Let be a policy N-tuple with a
finite cost(J(v*) < o), and suppose that for evetyc such that Jv) < oo,
the following holds:

> E{Vucwir Wb () =" 0] = 0, 9

Then,y* is a team-optimal policy, and it is unique ifd&w, )| 7] is strictly

convex in almost surely.
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A generalization of Radner and Krainak et. al.’s theoren

@ (c.1) Forally € I" such thatl(y) < oo, the following random variables
have well-defined (finite) expectations (i.e., mean values)

Vw7 D' () =), TeN
e (c.2)I' is a Hilbert space for eadhe N, andJ(y) < ccforally € T
Furthermore,
Eey{Vuclwir*(y)} €TV, i€ieN.

Theorem

Let{J;T',i €} be a static stochastic team problem which satisfies all the
hypotheses of the previous theorem, but instead of (9)ithetre(c.1) or (c.2)
be satisfied. Then, if* is a pbpo policy it is also team optimal. Such a polic

is unique if Bc(w; )| ] is strictly convex iru, a.s.
. 38/68




Convexity of Sequential Dynamic Teams

The static reduction of a sequential dynamic team probléaxists, is not
unique. However, the following holds.

Theorem
A stochastic dynamic team problem with a static reducticzoisvex if and
only if its static reduction is.
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Non-convexity of Witsenhausen’s Counterexample

Consider the celebrated Witsenhausen’s counterexamplg:isia dynamic
non-classical team problem with andw! zero-mean independent Gaussiar
random variables with unit variance anti= y*(y*), u?> = v?(u + w!) and
the cost functiore(w, ut, u?) = K2(y! — ut)? + (u* — u2)2 for somek > O:
—x2/2.

The static reduction proceeds as follows, wijtlx) = E

/ (k(U* — Y52 4 (Ut — )2)Q(dyt)y (dutyb)ya (ALY P(dy?|ub)
- /<k<u1—yl>2+<u—u Q) dul|ywldue|y2 0P - oy
= [ (068 + o wp ey ey (y) f) Qay)Q(d

whereQ denotes a Gaussian measure with zero mean and unit variatdige a

its density.
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Quasi-classical information structures: Reduction tgiou
information equivalence

An ISis partially nested if an agent’s information at a particuget can
depend on the action of some other agent at some stageonly if she also
has access to the information of that agent at stage

Partially nested information structures include the cadesre explicit
information exchange in a decentralized system amongidaaisakers is
faster than information propagation through system dynami

Theorem

Consider a partially nested stochastic dynamic team witbrazex cost
function. The team problem is convex.
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Convexity of Sequential Dynamic Teams

Ho and Chu established this result for the special setupvimgbthe partially
nested LQG teams. In this case, optimal policies are lireaugh an
equivalence to static teams: Consider the following dyramam withN
DMs, with DM k having the following measurement

y<=CKe+ > D, (10)
ii—k
where¢ is an exogenous random variable picked by nature, andk denotes

the precedence relation that the action of Dé&ffects the information of DM
k andu' is the action of DM.
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Quasi-classical information structures: Reduction tgiou
information equivalence

If the information structure is quasi-classical, then thfeimation available
to DM k, ZK, can be represented with:

K = (Y {T',i — k}}.

That is, DMk has access to the information available to all the signaling
agents. Such an IS is equivalent to theZtS= {{¥}, wherey* is a static
measurement given by

¥ = {ckg, {Cl¢,i — k}}. (11)

Such a conversion can be done provided that the policiesedity the

agents are deterministic.
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Stochastic partial nestedness: A probabilistic definiabn
nestedness, its relation to convexity and signaling

When the information structure is non-classical or not gossical, the
decision makers may use their actions to communicate with etner. This
phenomenon is known as signalling.

When signaling is present, the problem has a communicatiavsur and any
communication problem is inherently non-convex.

It is known that quasi-classical information structuremeiate the incentive
for signaling, since the future decision makers alreadel@cess to the
information at the signaling decision maker.
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Stochastic partial nestedness: A probabilistic definibn
nestedness, its relation to convexity and signaling

In the following, we exhibit that the static reduction prdes an effective
method to identify when lack of a signaling incentive can siaklished and
perhaps can lead to a more refined probability and informainicture
dependent characterization refstednesghat generalizes partial nestedness
Definition

The information structure of a sequential team problemaslsastically
partially nested, if for an arbitrary cost function:&2 x [, UK — R there
exists a static reduction of this team which does not alterldiss function.
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Stochastic partial nestedness: A probabilistic definiabn
nestedness, its relation to convexity and signaling

This definition implies the following resuilt.

Lemma

Consider a sequential team problem with a stochasticallyially nested
information structure. If the cost functiorie, u) is convex iru, then the tea
problem is convex.

Proof. The static reduction of this team preserves convexity ofdke
function, for an arbitrary convex loss functionQ x [, Uk — R. Thus, the
reduced problem, and hence the original problem is convex. o
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Stochastic partial nestedness: A probabilistic definiabn
nestedness, its relation to convexity and signaling
Example
X1 = a0 + U W, G = 8 + U+ W]
X1 = 8% + U + U+ WY
Yo = 06 V8 + V] + )
¥ = 04 + W + V206 + 8,08 + ),
T-1
1= X (602 + 622 + paled + a2 |

t=0

with p1, p2 > 0. Measurements are{ k= {y., 1! ;}, with I}, = y5. This system

is non-classical. But, an optimal team policy is linear.

v
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Asymptotic Optimality of Finite Models in Stochastic
Control

The approximation result builds on a sequence of recentestush identifying
conditions orwhen a finite model can be used to construct approximately
optimal policiesfor a Markov Decision Problem with Borel state and action
spaces [Saldi,Y., Linder'13,14,15].

Conditions on the transition kernels: Weak continuityyss¢ continuity or
total variation continuity

Conditions on cost functions: Lipschitz continuity.

Discounted cost vs. average cost: Recurrence conditions

It turns out that the results are applicable to team problézasling to the
following results.
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Approximation of Team Problems and Optimal Solution

Consider arN-agent static team problem in which DiMi = 1,... N,
observes a random variabfeand takes an actiou.

Given any state realizatiax the random variablg has a distribution
Wi (- |x); that is,W (- |x) is a stochastic kernel ofi givenX.
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Approximation of Static Team Problems

The team cost functionis a non-negative function of the state, observation
and actions; that ig;: X x Y x U — [0, 00), whereY =[]\, Y' and
U = [[L, U'. For Agenti, the set of strategiel' is given by

I':={4": Y = U' 4 is measurablp.
Recall thafl” = HiN:1 I''. Then, the cost of the teain: T' — [0, co) is given
by
I) = / c(x,y, u)P(dx, dy),
XxY
whereu = y(y). Here,P(dx dy) := P(dx) []L, Wi (dy|x) denotes the joint
distribution of the state and observations. Therefore, aveh

J* = inf IJ(YM).
llgr(v)
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Approximation of Static Team Problems

In this section, we impose the following assumptions.

Assumption

(a) The cost function c is bounded and continuous.in

(b) For eachi,U'is a convex subset of a locally convex vector space.

(c) Foreachi,Y'is compact.
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Approximation of Static Team Problems

We first prove that the minimum cost achievable by continwgitetegies is
equal to the optimal cosk*. To this end, for each we define
Il := {4 € T': 4 is continuoug andT¢ := [\, L.

Proposition

We have

inf J J.
Ut (7)
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Approximation of Static Team Problems
Let d; denote the metric oM. SinceY' is compact, one can find a finite set
Y = {yi1,..., Y.} C Y suchthat™ is an ¥n-netinY'; that is, for any
y € Y we have

min di(y, 2) <

zeY™!

Sl

Define functionQn; mappingY' to Y™ by

Qn,i(y) = argmind;(y, ).

zeYni
For eacn, Qy; induces a partitiof S; | }}":1 of Y' given by
Sij = {yeYi:Qnily) =Vij}-

For anyy' € T, we lety™ denote the strategy o Qn;.
B S



Approximation of Static Team Problems

Define
mi.— {’Yi er . fyi is constant on ea&ﬁi,j}

and sop™ e T™ for eachy' € T, We letl’, := [JL, ™. The following
theorem states that optimal poligy can be approximated by policieslin.

Theorem

We have

lim inf J(v) = J".

N—o00 y€ln
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Approximation of Static Team Problems

For eachn, define stochastic kerneW™'( - |x) on Y™ givenX as follows:
. in
WM [x) =D W(Sijlx)dy, ().
=1
LetIT™ := {7 : YM — U', 7' measurablé andIl, := [\, I"!. Define
Jn: Iy — [0, 00) @s
) = [ cxy.uBs(dx ).
XXYn

wherer = (71, ..., 7), u = z(y), Yo = [TV, Y™, and
Pa(dx, dy) = P(dx) [T, W™ (dy/[x).
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Approximation of Static Team Problems

Theorem

For anye > 0, there exists a sufficiently large n such that the optimal (or
almost optimal) policyr™ € II,, for the cost | is e-optimal for the original
team problem when* = (7%, ..., 7N*) is extended tef viay' = 7'* o Qp;.

e I EEE— 57/68



Approximation of Dynamic Team Problems

Theorem

Suppose that a static reduction exists, the cost is contis\uand
fi(wo, U1, y) is continuous inu'~1 fori = 1,...,N. Then, the static
reduction of the dynamic team model satisfies the existemuditons.

Observe that neither the Witsenhausen’s counterexamplin@o
point-to-point communication problem satisfy the compass condition. In
the following, we discuss this important setting.
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Approximation of Witsenhausen’s Counterexample: Pris
Work

(]

Lee-Lao-Ho, TAC'01

(]

Baglietto-Parisini-Zoppoli, TAC'01
Li-Marden-Shamma, CDC’09
Gnecco-Sanguinetti, INOC’09, OL'12

(]

Gnecco-Sanguinetti-Gaggero, SICON'12

@ McEneaney-Han, Automatica’l5

The following question has not been answered, to our knaye@@dDoes
there exist a computational scheme that would generateig®lvith costs
arbitrarily close to optimum? What is the (optimal) valuelé Witsenhausen

counterexample?
e 60/68



Approximation of Witsenhausen’s Counterexample

Recall that we have two agents. Agent 1 observes a zero meamén
variance Gaussian random variaglteand decides its strategyt, and Agent 2
observeg? = u' + vand decides its strategy. Here,v is a zero mean and
unit variance Gaussian noise independent'ofThe cost function of the team
is given by

c(yt, ut, u?) = I(ut — yH2 4 (U — uh)2,

It was shown earlier that this problem can be reduced to i $t&tm problem
in which agents observe mutually independent zero mean@ihgdariance
Gaussian random variables.
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Approximation of Static Team Problems

Note that strategy spaces of the original problem and it&s&duction are
identical, and same strategies induce same team costs.
For anyk € R, we letK := [—k, k] and

ik .— {,yi eT A (Y) C K},

whereI" denotes the strategy space of Agerihat is, the set of measurable
functions fromY' to U, whereY' = U' = Rfori = 1,2.
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Approximation of Static Team Problems
Lemma

For anye > 0, there exists k R such that

inf JEAR) < inf  J(v5A2) +e.
(71772)€F1X1“2,k (’Y ’)’ ) _(’Yl,’yz)EFlXFZ (’Y 7)

Recall thatl“‘c denotes the set of continuous strategies of AgebDefine
I =rknTi, fori = 1,2.

Proposition

For any ke R, , we have

inf I, A4?) = inf I 2.
(G AP)ET S s T 57 (v1,42)ertx 2k %)
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Approximation of Witsenhausen’s Counterexample

As a result, one can search for near optimal strategies ftseWhausen’s
counterexample over the &} x 2K for k sufficiently large.

We can show that any strategyTij x Pg’k for arbitraryk € R, can be
approximated with arbitrary precision by quantized sgt®.

Fix anyk. Let us chooséy!, 2) € T’ x I'2* such thatl(1, 42) < oo. Fix
anyd > 0. There exists = [—I,1] such that

NI &

'J@W) - [ ety PR R < (12)
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Approximation of Witsenhausen’s Counterexample

Let us quantize the interval using a uniform quantizer, denoted@saving
N(I) output levels; that is,

q:L—{yn,....\npy} CL
and

_ T T
qty) = [yj—i,yj+§>,

wherer = %

Define the quantized strategy’9, v29) as follows:
o Yoqly), ifyel
YY) = _
0, otherwise
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Approximation of Witsenhausen’s Counterexample
To compute a near optimal policy for Witsenhausen’s coaxample it is
sufficient to choose a strategy based on the quantized Ghissrsy

(a(y'), a(y?)) for sufficiently large(l,N(1)), whereq : L — {y1,...,yng)} is
extended t&R by mappingR \ L to 0.

In other words, for eacti, N(1)), letY! N = ={0,y1,-.-,Ynq } (i-€., output
levels of the extended) and define probablllty measuPe ) on'Y! N() @S
Py (Vi) = P(a(w)). (13)
Moreover, IetHI N() = {n: Y Ny Ui 7' measurablg and define
N(1)
Iy (7)== e v w2 )P )PNa) ()

JiIZO
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Approximation of Witsenhausen’s Counterexample:
Asymptotic Optimality of Finite Representations

Theorem

For anye > 0, there existgl, N(l)) such that the optimal policy

(¥, %) € Iy x Py for the cost Jy) is e-optimal for
Witsenhausen’s counterexample wiieh, 72%) is extended teY? x Y2 via
4 =7* 0 q,i=1,2. In particular, quantized policies are asymptotically
optimal.

In fact, the action space can also be quantized with an aribjtismall loss:
Thus, a numerical algorithm can be constructed so that sepequof
successively refinefinite modelcan be obtained whose solution limit will
lead to the value of Witsenhausen’s counterexample.
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