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Witsenhausen’sIntrinsic Model

A decentralized control system is calledsequential, if there is a pre-defined

order in which the decision makers (DMs) act. The model consists of:

A collection of spaces{Ω,F , (Ui ,U i), (Yi ,Y i), i ∈ N}, specifying the

system’s control and measurement spaces which are assumed to be

standard Borel.N = |N | is the number of control actions taken. Recall

that astandard Borel spaceis a subset of a complete, separable and

metric space.

A measurement constraint: TheYi-valued observation variables are

given byyi = ηi(ω,u−i), u−i = {uk, k ≤ i − 1}.

A design constraint: γ = {γ1, γ2, . . . , γN}: ui = γ i(yi), with

yi = ηi(ω,u−i), andγ i , ηi measurable functions. LetΓi denote the set of

all admissible policies for DMi andΓ =
∏

k Γ
k.
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Characterization of information structures

A sequential team isstatic, if the information available at every decision

maker is only affected by exogenous disturbances (Nature);that is no

other decision maker can affect the information at any givendecision

maker.

A sequential team problem isdynamicif the information available to at

least one DM is affected by the action of at least one other DM.

An IS {yi ,1 ≤ i ≤ N} is classicalif yi contains all of the information

available to DMk for k < i.

An IS isquasi-classicalor partially nested, if wheneveruk, for some

k < i, affectsyi , yi containsyk.

An IS which is not partially nested isnonclassical.
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Optimal Policies

Let γ = {γ1, · · · , γN}, and a cost function be defined as:

J(γ) = E[c(ω0,u)],

for some non-negative loss (or cost) functionc : Ω×
∏

k U
k → R.

Definition

For a given stochastic team problem with a given informationstructure,

{J; Γi , i ∈ N}, a policy (strategy) N-tupleγ∗ := (γ1∗, . . . , γN∗
) is an optimal

team decision rule if

J(γ∗) = inf
γ∈Γ

J(γ) =: J∗
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Optimal Policies

Definition

An N-tuple of strategiesγ∗ := (γ1∗, . . . , γN∗
) constitutes a person-by-person

optimal (pbp optimal) solution) if, for allβ ∈ Γi and all i ∈ N , the following

inequalities hold:

J∗ := J(γ∗) ≤ J(γ−i∗, β),

where

(γ−i∗, β) := (γ1∗, . . . , γ i−1∗, β, γ i+1∗, . . . , γN∗
). (1)
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Witsenhausen’s equivalent model and static reduction of

sequential dynamic teams

Following Witsenhausen’88, we say that two information structures are

equivalent if:

(i) The policy spaces are isomorphic in the sense that policies under one

information structure are realizable under the other information structure,

(ii) the costs achieved under identical policies are identical almost surely and

(iii) if there are constraints in the admissible policies, the isomorphism among

the policy spaces preserves the constraint conditions.
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Witsenhausen’s equivalent model and static reduction of

sequential dynamic teams

Witsenhausen shows that a large class of sequential team problems admit an

equivalent information structure which is static. This is called thestatic

reductionof an information structure.

Earlier, for partially observed (or quasi-classical) information structures, a

similar reduction was studied by Ho and Chu(’72) in the context of LQG

systems and a class of invertible non-linear systems.

An equivalence between sequential dynamics teams and theirstatic reduction

is as follows.
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Witsenhausen’s equivalent model and static reduction of

sequential dynamic teams

Consider a dynamic team setting according to the intrinsic model where there

areN time stages, and each DM observes,yk = ηk(ω,u1,u2, · · · ,uk−1), and

the decisions are generated byuk = γk(yk). The resulting cost under a given

team policy isJ(γ) = E[c(ω, y,u)], wherey = {yk, k ∈ N}.

This dynamic team can be converted to a static team provided for every

t ∈ N , there exists a functionft for all S:

P(yt ∈ S|ω,u1, · · · ,ut−1) =

∫

S
ft(ω,u

1,u2, · · · ,ut−1, yt)Qt(dyt).
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Witsenhausen’s equivalent model and static reduction of

sequential dynamic teams

We can then write

P(dω,dy) = P(dω)
N
∏

t=1

ft(ω0,u
1,u2, · · · ,ut−1, yt)Qt(dyt).

The cost functionJ(γ) can then be written as

J(γ) =
∫

P(dω)
N
∏

t=1

(ft(yt, ω0,u
1,u2, · · · ,ut−1, yt)Qt(dyt))c(ω, y,u), (2)

where now the measurement variables can be regarded asindependentand by

incorporating the{ft} terms intoc, we can obtain an equivalentstatic team

problem. Hence, the essential step is to appropriately adjust the probability

space and the cost function.
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Strategic Measures, Convexity Properties, and Optimal

Solutions

We can view a measurable policy as a special case of randomized policies.

This interpretation has many useful properties, one being the topological use

of the space of probability measures.

For stochastic control problems,strategic measures(Schäl’75,

Dynkin-Yushkevich’79, Feinberg’96) are defined as the set of probability

measures induced by admissible control policies.

In the following, we discuss the case for stochastic team problems.
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Strategic Measures, Convexity Properties, and Optimal

Solutions

Let LA(µ) be the set of strategic measures induced by all admissible team

policies with(ω, y) ∼ µ. In the following,B = B0 ×
∏

k Bk are used to denote

all the Borel sets inΩ×
∏

k U
k,

LA(µ) :=

{

P ∈ P

(

Ω×
N
∏

k=1

(Yk × U
k)

)

:

P(B) =
∫

µ(dω,dy)
∏

k

1{uk=γk(yk)∈Bk}, γ
k ∈ Γk

}

(3)
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Strategic Measures, Convexity Properties, and Optimal

Solutions

Let LR(µ) be the set of strategic measures induced by all admissible team

policies withω, y ∼ µ with individually randomized policies (that is, with

independent randomizations):

LR(µ) :=

{

P ∈ P

(

Ω×
N
∏

k=1

(Yk×U
k)

)

: P(B) =
∫

µ(dω,dy)
∏

k

Πk(duk|yk)

}

whereΠk takes place from the set of stochastic kernels fromY
k toU

k for each

k.
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Strategic Measures, Convexity Properties, and Optimal

Solutions

ConsiderΥ = [0,1]N and let

LC(µ) :=

{

P ∈ P

(

Ω×
N
∏

k=1

(Yk × U
k)

)

: P(B) =
∫

η(dz)LA(µ, γ(z)),

η ∈ P(Υ)

}

Here,γ(z) denotes a collection of team policies measurably parametrized by

z∈ Υ.
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Strategic Measures, Convexity Properties, and Optimal

Solutions

Finally, letLCR denote the set of strategic measures that are induced by some

common randomness and arbitrary independent randomness.

LCR(µ) :=

{

P ∈ P

(

Ω×
N
∏

k=1

(Yk × U
k)

)

:

P(B) =
∫

η(dz)µ(dω,dy)
∏

k

Πk(duk|yk, z)

}
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Strategic Measures for Static Teams and Optimality of

Deterministic Policies

Theorem

(i) LR has the following representation

LR(µ) = {P ∈ P

(

Ω×
N
∏

k=1

(Yk × U
k)

)

: P(B) =
∫

U(dz)LA(µ, γ(z)),

U ∈ P(Υ),U(dw1, · · · , dwN) =
∏

s

ηk(dwk), ηk ∈ P([0, 1])}, (4)

that is U is constructed by the product of N independent random variables.

(ii) LC(µ) is convex. Its extreme points form LA(µ). The sets LR and LCR are not

convex for general sequential teams.

infγ∈Γ J(γ) = infP∈LA(µ)

∫

P(ds)c(s) = infP∈LR(µ)

∫

P(ds)c(s) =

infP∈LC(µ)

∫

P(ds)c(s). Deterministic policies are optimal among all.
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Strategic measures for dynamic teams

Theorem

(i) LR(µ) has the following representation so that for any P∈ LR(µ),

P(B) =

∫

U(dz)LA(µ, γ(z))(B)

U(dv1, · · · ,dvN) =
∏

s

ηs(dvs), ηs ∈ P([0,1])},(5)

whereηs is the Lebesgue measure on[0,1] andγ(z) is a collection of

deterministic policies parametrized by z.

(ii)

inf
γ∈Γ

J(γ) = inf
P∈LA(µ)

∫

P(ds)c(s) = inf
P∈LR(µ)

∫

P(ds)c(s)

In particular, deterministic policies are optimal among the randomized

class.
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Convexity of sets of Strategic Measures

Theorem
If the sequential team is not classical (and not necessarilynon-classical),

the set of strategic measures is not convex.

If the information structure is classical, and if randomized policies are

allowed so that, DM i has access to yk,uk, k < i and yi , then the set of

strategic measures is convex.
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Existence of optimal team policies

Establishing the existence and structure of optimal policies is a challenging

problem.

More specific setups and non-existence results have been studied in

Witsenhausen’69, Wu-Verdu’11, Y.-Linder’12.

Considering the set of randomized strategic measures and convexification of

these measures allow for placing a useful topology, that of weak convergence

of probability measures, on the strategy spaces.
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Existence of optimal team policies

Theorem

(i) Consider a static or dynamic team. Let the loss function cbe lower

semi-continuous in x,u and LR(µ) be a compact subset under weak topology.

Then, there exists an optimal team policy. This policy is deterministic and

induces a strategic measure in LA.

(ii) Consider a static team or the static reduction of a dynamic team with c

denoting the loss function. Let c be lower semi-continuous in x,u and LC(µ)

be a compact subset under weak topology. Then, there exists an optimal team

policy. This policy is deterministic and induces a strategic measure in LA.
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Sufficient conditions for existence of optimal policies

Theorem (Gupta, Y., Basar, Langbort’15)

Consider a static team where the action setsU
i, i ∈ N are compact.

Furthermore, if the measurements satisfy:

P(dy|ω0) =
n
∏

i=1

Qi(dyi |ω0),

where Qi(dyi |ω0) = ηi(yi , ω0)ν
i(dyi) for some measureν and continuousη

that satisfy that for everyǫ > 0,∃δ such that if d(a,b) < δ:

|ηi(b, ω0)− ηi(a, ω0)| ≤ ǫhi(a, ω0), with supω0

∫

hi(a, ω0)ν
i(dyi) < ∞, and

c(ω0,u) is continuous, then the set LR(µ) is weakly compact and there exists

an optimal team policy (which is deterministic and hence in LA(µ)).

22 / 68



Existence of optimal team policies: Proof Sketch

The existence result also applies to static reductions for sequential dynamic

teams, and a class of teams with unbounded cost functions andnon-compact

action spaces.

The issue is the closedness property of the set of strategic measures achieved

by independent randomization: A sequence of conditionallyprobability

measures may converge to a limit which is not conditionally independent.

The proof builds on the fact that, conditioned on the channelproperties, a

weak limit of a sequence of joint probability measures that satisfies condition

independent properties is also conditionally independent.

Example for a channel which satisfies the desired continuityproperties is the

additive Gaussian channel:yk = ω0 + vk.
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Dynamic Teams and Witsenhausen’s Counterexample

The existence result applies for Witsenhausen’s counterexample.

It is known that classical LQG team problems admit solutionswhich are

linear.

[Witsenhausen’68] showed that when there are measurability and information

constraints leading to a non-classical information structure, this result is no

longer true.

[Witsenhausen’68]: Even LQG problems may admits solutionswhich are

non-linear.
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Witsenhausen’s Counterexample

u1u0

w1

x0

y0

x1 x2

y1µ0 µ1

y0 = x0, u0 = µ0(y0), x1 = x0 + u0,

y1 = x1 + w1, u1 = µ1(y1), x2 = x1 + u1.

The goal is to minimize the expected performance index for somek > 0

QW(x,u0,u1) = k(u0)
2 + x2

2
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Witsenhausen’s Counterexample

This is the celebrated Witsenhausen’s counterexample.

It is described by a linear system; all primitive variables are Gaussian.

Yet optimal team policy is non-linear [Witsenhausen’68].

Witsenhausen established that a solution exists ([Wu-Verdú’11] provided an

alternative proof using Transport Theory), and established that an optimal

policy is non-linear.
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Witsenhausen’s Counterexample

Supposex andw1 are two independent, zero-mean Gaussian random variables

with varianceσ2 and 1. An equivalent representation is:

u0 = γ0(x), u1 = γ1(u0 + w).

QW(x,u0,u1) = k(u0 − x)2 + (u1 − u0)
2 , (6)

x
γ0

γ1

y u1u0

w1

Figure:Flow of information in Witsenhausen’s counterexample.
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Witsenhausen’s Counterexample

Now consider a different choice forQ:

QTC(x,u0,u1) = k(u0)
2 + (u1 − x)2 , (7)

where againk > 0.

x
γ0

γ1

y u1u0

w1

Figure:Flow of information in Witsenhausen’s counterexample.
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Witsenhausen’s Counterexample

The version of this problem where the soft constraint is replaced by a hard

power constraint,E[(u0)
2] ≤ k, is known as theGaussian Test Channel

(GTC).

In this contextγ0 is theencoderandγ1 thedecoder, where the latter’s optimal

choice is the conditional mean ofx giveny, that isE[x|y].

The best encoder for the GTC can be shown to be linear (a scaledversion of

the source output,x), which in turn leads to a linear optimal decoder.

The approach here is through information theoretic arguments

[Goblick’65][Berger’71].
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Witsenhausen’s Counterexample

Now, consider the more general version of (7):

QGTC(x,u0,u1) = k(u0)
2 + (u1 − x)2 + b0u0x , (8)

whereb0 is a scalar. In this case, an optimal solution is linear

[Bansal-Bacsar’87]. The difference between (8) and Witsenhausen’s problem

is thatQ in the former has a product term between the decision rules ofthe

two agents while here it does not.

x
γ0

γ1

y u1u0

w1

Figure:Flow of information in Witsenhausen’s counterexample.
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Witsenhausen’s Counterexample

Hence, it is not only the nonclassical nature of the information structure but

also the structure of the performance index that determineswhether linear

policies are optimal in these quadratic dynamic decision problems with

Gaussian statistics and nonclassical information.

Furthermore, the noise distribution is also crucial: If thenoise variables are

discrete, it can be shown that the Witsenhausen’s counterexample does not

admit an optimal solution [Y.-Basar’13].
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Witsenhausen’s Counterexample

The static reduction of the Witsenhausen’s counterexampleis a two controller

static team where the observationsy1 andy2 of the two controllers are

independentzero-mean Gaussian random variables.

The control lawsγ1 andγ2 are to be chosen to minimize

J(γ1, γ2) = E
[

(y1 + u1 − u2)2 + (ku1)2e(y
1+u1)(2y2−y1−u1)/2]

Theorem

The Witsenhausen’s counterexample admits an optimal solution.

Also applies to: The LQG problem, the output feedback control problem, the

relay channel problem etc.
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Convexity of Static Team Problems

Definition
A (static or dynamic) team problem is convex onΓ if J(γ) < ∞ for all γ ∈ Γ

and for anyα ∈ (0,1), γ
1
, γ

2
∈ Γ:

J(αγ
1
+ (1− α)γ

2
) ≤ αJ(γ

1
) + (1− α)J(γ

2
)

Theorem

Consider a static team. J(γ) is convex if c(ω,u) is convex inu provided that

J(γ) < ∞ for all γ ∈ Γ.
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Convexity of Static Team Problems

The join of two σ-fields over some setX is the coarsestσ-field containing

both. Themeetof two σ-fields is the finestσ-field which is a subset of both.

In addition, letFj be thejoin of theσ-field, that isFj =
⋃

k F
k.

LetF i be theσ-field generated byηi and letFc =
⋂

k F
k be the meet of these

fields, this is termed ascommon knowledgeby Aumann’76 for finite

probability spaces.
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Convexity of Static Team Problems

Theorem

(i)If a team problem is convex, then E[c(ω,u)|Fc] is convex in u almost surely.

(ii) If

E[c(ω,u)|Fj ]

is convex in u almost surely, then the team problem is convex on the set of

team policies that satisfy J(γ) < ∞.

36 / 68



A generalization of Radner and Krainak et. al.’s theorems

Theorem

Let{J; Γi , i ∈} be a static stochastic team problem where Ui ≡ R
mi , i ∈, the

loss function E[L(ξ, )|Fj ] is convex and continuously differentiable in almost

surely, and J(γ) is bounded from below on . Letγ∗ be a policy N-tuple with a

finite cost(J(γ∗) < ∞), and suppose that for everyγ ∈ such that J(γ) < ∞,

the following holds:

∑

i∈
E{∇ui c(ω; γ∗(y))[γ i(yi)− γ i∗(yi)]} ≥ 0, (9)

Then,γ∗ is a team-optimal policy, and it is unique if E[c(ω, )|Fj ] is strictly

convex in almost surely.
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A generalization of Radner and Krainak et. al.’s theorems

(c.1) For allγ ∈ Γ such thatJ(γ) < ∞, the following random variables

have well-defined (finite) expectations (i.e., mean values)

∇ui c(ω; γ∗())[γ i(yi)− γ i∗(yi)], i ∈ N

(c.2)Γi is a Hilbert space for eachi ∈ N , andJ(γ) < ∞ for all γ ∈ Γ.

Furthermore,

Eξ|yi{∇ui c(ω; γ∗(y)} ∈ Γi, i ∈ i ∈ N .

Theorem

Let{J; Γi , i ∈} be a static stochastic team problem which satisfies all the

hypotheses of the previous theorem, but instead of (9), let either (c.1) or (c.2)

be satisfied. Then, ifγ∗ is a pbpo policy it is also team optimal. Such a policy

is unique if E[c(ω; )|Fj ] is strictly convex inu, a.s.
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Convexity of Sequential Dynamic Teams

The static reduction of a sequential dynamic team problem, if exists, is not

unique. However, the following holds.

Theorem
A stochastic dynamic team problem with a static reduction isconvex if and

only if its static reduction is.
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Non-convexity of Witsenhausen’s Counterexample

Consider the celebrated Witsenhausen’s counterexample: This is a dynamic

non-classical team problem withy1 andw1 zero-mean independent Gaussian

random variables with unit variance andu1 = γ1(y1), u2 = γ2(u1 + w1) and

the cost functionc(ω,u1,u2) = k2(y1 − u1)2 + (u1 − u2)2 for somek > 0:

The static reduction proceeds as follows, withη(x) = 1√
2π

e−x2/2:

∫

(k(u1 − y1)2 + (u1 − u2)2)Q(dy1)γ1(du1|y1)γ1(du2|y2)P(dy2|u1)

=

∫

(k(u1 − y1)2 + (u1 − u2)2)Q(dy1)γ1(du1|y1)γ1(du2|y2)η(y2 − u1)dy2

=

∫
(

(ku2
0 + (u0 − u1)

2)γ1(du1|y1)γ1(du2|y2)
η(y2 − u1)dy2

η(y2)

)

Q(dy1)Q(dy

whereQ denotes a Gaussian measure with zero mean and unit variance andη

its density.
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Quasi-classical information structures: Reduction through

information equivalence

An IS is partially nested if an agent’s information at a particular staget can

depend on the action of some other agent at some staget′ ≤ t only if she also

has access to the information of that agent at staget′.

Partially nested information structures include the caseswhere explicit

information exchange in a decentralized system among decision makers is

faster than information propagation through system dynamics.

Theorem
Consider a partially nested stochastic dynamic team with a convex cost

function. The team problem is convex.
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Convexity of Sequential Dynamic Teams

Ho and Chu established this result for the special setup involving the partially

nested LQG teams. In this case, optimal policies are linear through an

equivalence to static teams: Consider the following dynamic team withN

DMs, with DM k having the following measurement

yk = Ckξ +
∑

i:i→k

Dikui , (10)

whereξ is an exogenous random variable picked by nature, andi → k denotes

the precedence relation that the action of DMi affects the information of DM

k andui is the action of DMi.
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Quasi-classical information structures: Reduction through

information equivalence

If the information structure is quasi-classical, then the information available

to DM k, Ik, can be represented with:

Ik = {yk, {I i , i → k}}.

That is, DMk has access to the information available to all the signaling

agents. Such an IS is equivalent to the ISIk = {ỹk}, whereỹk is a static

measurement given by

ỹk =

{

Ckξ, {Ciξ, i → k}

}

. (11)

Such a conversion can be done provided that the policies adopted by the

agents are deterministic.
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Stochastic partial nestedness: A probabilistic definitionof

nestedness, its relation to convexity and signaling

When the information structure is non-classical or not quasi-classical, the

decision makers may use their actions to communicate with each other. This

phenomenon is known as signalling.

When signaling is present, the problem has a communicationsflavour and any

communication problem is inherently non-convex.

It is known that quasi-classical information structures eliminate the incentive

for signaling, since the future decision makers already have access to the

information at the signaling decision maker.

44 / 68



Stochastic partial nestedness: A probabilistic definitionof

nestedness, its relation to convexity and signaling

In the following, we exhibit that the static reduction provides an effective

method to identify when lack of a signaling incentive can be established and

perhaps can lead to a more refined probability and information structure

dependent characterization ofnestedness, that generalizes partial nestedness.

Definition
The information structure of a sequential team problem is stochastically

partially nested, if for an arbitrary cost function c: Ω×
∏

k U
k → R there

exists a static reduction of this team which does not alter the loss function.
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Stochastic partial nestedness: A probabilistic definitionof

nestedness, its relation to convexity and signaling

This definition implies the following result.

Lemma
Consider a sequential team problem with a stochastically partially nested

information structure. If the cost function c(ω,u) is convex inu, then the team

problem is convex.

Proof. The static reduction of this team preserves convexity of theloss

function, for an arbitrary convex loss functionl : Ω×
∏

k U
k → R. Thus, the

reduced problem, and hence the original problem is convex. ⋄
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Stochastic partial nestedness: A probabilistic definitionof

nestedness, its relation to convexity and signaling

Example

x1
t+1 = a1x1

t + u1
t + w1

t , x2
t+1 = a2x2

t + u2
t + w2

t

x3
t+1 = a3x3

t + u1
t + u2

t + w3
t

y1
t = (x1

t + v1
t , x

2
t + v2

t + v21
t , x3

t + v31
t )

y2
t = (x1

t + v1
t + v12

t , x2
t + v2

t , x
3
t + v32

t ),

J = E

[ T−1
∑

t=0

(

(x1
t )

2 + (x2
t )

2 + ρ1(u
1
t )

2 + ρ2(u
2
t )

2
)]

,

with ρ1, ρ2 > 0. Measurements are: Ii
t = {yi

t, I
i
t−1}, with Ii0 = yi

0. This system

is non-classical. But, an optimal team policy is linear.
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Asymptotic Optimality of Finite Models in Stochastic

Control

The approximation result builds on a sequence of recent studies on identifying

conditions onwhen a finite model can be used to construct approximately

optimal policiesfor a Markov Decision Problem with Borel state and action

spaces [Saldi,Y., Linder’13,’14,’15].

Conditions on the transition kernels: Weak continuity, setwise continuity or

total variation continuity

Conditions on cost functions: Lipschitz continuity.

Discounted cost vs. average cost: Recurrence conditions

It turns out that the results are applicable to team problems, leading to the

following results.
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Approximation of Team Problems and Optimal Solutions

Consider anN-agent static team problem in which DMi, i = 1, . . . ,N,

observes a random variableyi and takes an actionui .

Given any state realizationx, the random variableyi has a distribution

Wi( · |x); that is,Wi( · |x) is a stochastic kernel onYi givenX.
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Approximation of Static Team Problems

The team cost functionc is a non-negative function of the state, observations,

and actions; that is,c : X × Y × U → [0,∞), whereY :=
∏N

i=1 Yi and

U :=
∏N

i=1 Ui. For Agenti, the set of strategiesΓi is given by

Γi :=
{

γ i : Yi → Ui, γ i is measurable
}

.

Recall thatΓ =
∏N

i=1 Γ
i. Then, the cost of the teamJ : Γ → [0,∞) is given

by

J(γ) =
∫

X×Y
c(x, y,u)P(dx,dy),

whereu = γ(y). Here,P(dx,dy) := P(dx)
∏N

i=1 Wi(dyi |x) denotes the joint

distribution of the state and observations. Therefore, we have

J∗ = inf
γ∈Γ

J(γN).
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Approximation of Static Team Problems

In this section, we impose the following assumptions.

Assumption

(a) The cost function c is bounded and continuous inu.

(b) For each i,Ui is a convex subset of a locally convex vector space.

(c) For each i,Yi is compact.
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Approximation of Static Team Problems

We first prove that the minimum cost achievable by continuousstrategies is

equal to the optimal costJ∗. To this end, for eachi, we define

Γi
c :=

{

γ i ∈ Γi : γ i is continuous
}

andΓc :=
∏N

i=1 Γ
i
c.

Proposition

We have

inf
γ∈Γc

J(γ) = J∗.
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Approximation of Static Team Problems

Let di denote the metric onYi. SinceYi is compact, one can find a finite set

Yn,i :=
{

yi,1, . . . , yi,in

}

⊂ Yi such thatYn,i is an 1/n-net inYi; that is, for any

y ∈ Yi we have

min
z∈Yn,i

di(y, z) <
1
n
.

Define functionQn,i mappingYi to Yn,i by

Qn,i(y) := arg min
z∈Yn,i

di(y, z).

For eachn, Qn,i induces a partition{Si,j}
in
j=1 of Yi given by

Si,j :=
{

y ∈ Yi : Qn,i(y) = yi,j
}

.

For anyγ i ∈ Γi, we letγn,i denote the strategyγ i ◦ Qn,i.
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Approximation of Static Team Problems

Define

Γn,i :=
{

γ i ∈ Γi : γ i is constant on eachSi,j
}

and so,γn,i ∈ Γn,i for eachγ i ∈ Γi. We letΓn :=
∏N

i=1 Γ
n,i. The following

theorem states that optimal policyγ∗ can be approximated by policies inΓn.

Theorem

We have

lim
n→∞

inf
γ∈Γn

J(γ) = J∗.
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Approximation of Static Team Problems

For eachn, define stochastic kernelsWn,i( · |x) on Yn,i givenX as follows:

Wn,i( · |x) :=
in
∑

j=1

W(Si,j|x)δyi,j ( · ).

LetΠn,i :=
{

πi : Yn,i → Ui, πi measurable
}

andΠn :=
∏N

i=1 Π
n,i . Define

Jn : Πn → [0,∞) as

Jn(π) :=

∫

X×Yn

c(x, y,u)Pn(dx,dy),

whereπ = (π1, . . . , πN), u = π(y), Yn =
∏N

i=1 Yn,i, and

Pn(dx,dy) = P(dx)
∏N

i=1 Wn,i(dyi |x).

56 / 68



Approximation of Static Team Problems

Theorem

For anyε > 0, there exists a sufficiently large n such that the optimal (or

almost optimal) policyπ∗ ∈ Πn for the cost Jn is ε-optimal for the original

team problem whenπ∗ = (π1∗, . . . , πN∗) is extended toY via γ i = πi∗ ◦ Qn,i.
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Approximation of Dynamic Team Problems

Theorem

Suppose that a static reduction exists, the cost is continuous, and

fi(w0,ui−1, yi) is continuous inui−1 for i = 1, . . . ,N. Then, the static

reduction of the dynamic team model satisfies the existence conditions.

Observe that neither the Witsenhausen’s counterexample nor the

point-to-point communication problem satisfy the compactness condition. In

the following, we discuss this important setting.
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Approximation of Witsenhausen’s Counterexample: Prior

Work

Lee-Lao-Ho, TAC’01

Baglietto-Parisini-Zoppoli, TAC’01

Li-Marden-Shamma, CDC’09

Gnecco-Sanguinetti, INOC’09, OL’12

Gnecco-Sanguinetti-Gaggero, SICON’12

McEneaney-Han, Automatica’15

The following question has not been answered, to our knowledge?: Does

there exist a computational scheme that would generate policies with costs

arbitrarily close to optimum? What is the (optimal) value ofthe Witsenhausen

counterexample?
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Approximation of Witsenhausen’s Counterexample

Recall that we have two agents. Agent 1 observes a zero mean and unit

variance Gaussian random variabley1 and decides its strategyu1, and Agent 2

observesy2 = u1 + v and decides its strategyu2. Here,v is a zero mean and

unit variance Gaussian noise independent ofy1. The cost function of the team

is given by

c(y1,u1,u2) = l(u1 − y1)2 + (u2 − u1)2.

It was shown earlier that this problem can be reduced to a static team problem

in which agents observe mutually independent zero mean and unit variance

Gaussian random variables.
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Approximation of Static Team Problems

Note that strategy spaces of the original problem and its static reduction are

identical, and same strategies induce same team costs.

For anyk ∈ R+, we letK := [−k, k] and

Γi,k :=
{

γ i ∈ Γi : γ i(Yi) ⊂ K
}

,

whereΓi denotes the strategy space of Agenti; that is, the set of measurable

functions fromYi to Ui, whereYi = Ui = R for i = 1,2.
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Approximation of Static Team Problems

Lemma

For anyε > 0, there exists k∈ R+ such that

inf
(γ1,γ2)∈Γ1×Γ2,k

J(γ1, γ2) ≤ inf
(γ1,γ2)∈Γ1×Γ2

J(γ1, γ2) + ε.

Recall thatΓi
c denotes the set of continuous strategies of Agenti. Define

Γi,k
c := Γi,k ∩ Γi

c, for i = 1,2.

Proposition

For any k∈ R+, we have

inf
(γ1,γ2)∈Γ1×Γ2,k

J(γ1, γ2) = inf
(γ1,γ2)∈Γ1

c×Γ2,k
c

J(γ1, γ2).
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Approximation of Witsenhausen’s Counterexample

As a result, one can search for near optimal strategies for Witsenhausen’s

counterexample over the setΓ1
c × Γ2,k

c , for k sufficiently large.

We can show that any strategy inΓ1
c × Γ2,k

c for arbitraryk ∈ R+ can be

approximated with arbitrary precision by quantized strategies.

Fix anyk. Let us choose(γ1, γ2) ∈ Γ1
c × Γ2,k

c such thatJ(γ1, γ2) < ∞. Fix

anyδ > 0. There existsL = [−l, l] such that
∣

∣

∣

∣

J(γ1, γ2)−

∫

L×L
c̃(γ1, y1, γ2, y2)P(dy1)P(dy2)

∣

∣

∣

∣

<
δ

2
. (12)
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Approximation of Witsenhausen’s Counterexample

Let us quantize the intervalL using a uniform quantizer, denoted asq, having

N(l) output levels; that is,

q : L → {y1, . . . , yN(l)} ⊂ L

and

q−1(yj) =

[

yj −
τ

2
, yj +

τ

2

)

,

whereτ = 2L
N(l) .

Define the quantized strategy(γ1,q, γ2,q) as follows:

γ i,q(yi) =







γ i ◦ q(yi), if yi ∈ L

0, otherwise.
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Approximation of Witsenhausen’s Counterexample

To compute a near optimal policy for Witsenhausen’s counterexample it is

sufficient to choose a strategy based on the quantized observations

(q(y1),q(y2)) for sufficiently large(l,N(l)), whereq : L → {y1, . . . , yN(l)} is

extended toR by mappingR \ L to 0.

In other words, for each(l,N(l)), let Yi
l,N(l) := {0, y1, . . . , yN(l)} (i.e., output

levels of the extendedq) and define probability measurePl,N(l) on Yi
l,N(l) as

Pl,N(l)(yi) = P(q−1(yi)). (13)

Moreover, letΠi
l,N(l) := {πi : Yi

l,N(l) → Ui, π
i measurable} and define

Jl,N(l)(π
1, π2) :=

N(l)
∑

j,i=0

c̃(π1, yi , π
2, yj)Pl,N(l)(yi)Pl,N(l)(yj).

66 / 68



Approximation of Witsenhausen’s Counterexample:

Asymptotic Optimality of Finite Representations

Theorem

For anyε > 0, there exists(l,N(l)) such that the optimal policy

(π1∗, π2∗) ∈ Π1
l,N(l) ×Π2

l,N(l) for the cost Jl,N(l) is ε-optimal for

Witsenhausen’s counterexample when(π1∗, π2∗) is extended toY1 × Y2 via

γ i = πi∗ ◦ q, i = 1,2. In particular, quantized policies are asymptotically

optimal.

In fact, the action space can also be quantized with an arbitrarily small loss:

Thus, a numerical algorithm can be constructed so that a sequence of

successively refinedfinite modelscan be obtained whose solution limit will

lead to the value of Witsenhausen’s counterexample.
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