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A second-order networked system

associated to the graph G as follows

bik =

(
+1 if node i is the positive end of edge k.
�1 if node i is the negative end of edge k.

The incidence matrix B describes which nodes are intercon-
nected by an edge.

The dynamics of each robot are modeled within the port-
Hamiltonian framework. Define the state x 2 Rn, input u 2
Rm, and output y 2 Rm. The product of the input and output
uT (t)y(t) is the power supplied to the system. The general
form of a pH system is given by

ẋ = [J(x) � R(x)]rxH(x) + g(x)u

y = g(x)TrxH(x)
(1)

where J(x) = �J(x)T , R(x) � 0. The Hamiltonian H(x)
equals the total energy stored in the system, and its time
derivative is given by Ḣ  uT (t)y(t). Hence the increase
in the stored energy is always equal or smaller than the
power supplied through the power–port (u, y). Therefore (if
H is bounded from below) (1) is a strictly passive (lossless)
system when R(x) > 0 (R(x) = 0). See [5] for a concise
overview of the port–Hamiltonian framework.

II. PROBLEM STATEMENT

A. Wheeled robot dynamics in the port-Hamiltonian frame-
work

Consider a wheeled robot i with wheel radius ri, half
axle length Ri and heading �i (see Fig. 1). Let (xA,i, yA,i),
(xB,i, yB,i) and (xC,i, yC,i) denote respectively the center of
the wheel axle, the center of mass and a point at the front
end of the robot. Furthermore, let dAB,i and dAC,i denote
the distances between these points.

To write down the robot dynamics, define for robot i
the position qi = (xB,i, yB,i, �i)

T and momentum pi =

(pf,i, hi)
T . Here pf,i and hi refer to the forward and angular

momentum (see [13] for more details). The input vector
ui = (ui,x, ui,y)T are the forces along the x and y direction
acting on the point (xC,i, yC,i), while the output vector yi =
(yi,x, yi,y)T are the corresponding velocities. The dynamics
for such a robot affected by matched input disturbances di

is given by [13]
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Fig. 1. Wheeled robot i
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The Hamiltonian Hr
i (pi) equals the kinetic energy of the

robot and is given by
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where Mr
i = diag (mi, ICM,i), with robot mass mi and

moment of inertia ICM,i.
Writing the dynamics of a network of N robots in compact

form gives
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where

q = (q1, . . . , qN )
T

, p = (p1, . . . , pN )
T

,

u = (u1, . . . , uN )
T

, y = (y1, . . . , yN )
T

,
S(q) = block.diag {S1(q1), . . . , SN (qN )} ,
G(q) = block.diag {G1(q1), . . . , GN (qN )} ,
C(p) = block.diag {C1(p1), . . . , CN (pN )} ,

Dr = block.diag {Dr
1, . . . , D

r
N} ,

and Hr(p) =
PN

i=1 Hr
i (pi) = 1

2pT (Mr)
�1

p, with Mr =
block.diag {Mr

1 , . . . , Mr
N}.

B. Control goals

In this section we formally define the control goals for the
controller design presented in Section III. We consider the
control law ui as the sum of two control laws ũi and ďi.
The control law ũi achieves the desired formation, based on
the results in [13]. The control law ďi is designed based on
an internal-model-based approach ( inspired by the theory of
output regulation [7]) to reject the matched input disturbance
di in (2).

Introduction Event-triggered controllers Hybrid model Analytical guarantees Self-triggered controllers Simulation results Conclusions

Problem statement

Systems in network

• Inteconnection graph G = (I, E)

• Node dynamics (i ∈ I)

ṗi = vi

v̇i = −vi + ui

Control objective

Rendez-vous, i.e. pi(t) − pj(t) → 0 as t → ∞

Séminaire du groupe MAC, 4 juin 2014 2/36 Romain Postoyan - Université de Lorraine, CNRS (Nancy)

A second-order networked system

ṗi = vi
v̇i = −vi + ui , i ∈ I = {1,2, . . . ,n}

pi ∈ Rp position
vi ∈ Rp velocity
ui ∈ Rp torque
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ṗi

◆
=

✓
0 Si(qi)

�ST
i (qi) Ci(pi) � Dr

i

◆✓
rqi

Hr
i

rpi
Hr

i

◆

+

✓
0

Gi(qi)

◆
(ui + di)

yi = GT
i (q)rpi

Hr
i ,

(2)

where Dr
i = diag (df,i, d�,i),

Si(qi) =

0
@

cos�i �dAB,i sin�i

sin�i dAB,i cos�i

0 1

1
A ,

Gi(qi) =

✓
cos�i sin�i

�dAC,i sin�i dAC,i cos�i

◆
,

dAB,i

dAC,i

�i

xA,i xB,i xC,i

yA,i

yB,i

yC,i

ri

Ri

Fig. 1. Wheeled robot i

Ci(pi) =

0
@ 0

midAB,ihi

mid2
AB,i+ICM,i

� midAB,ihi

mid2
AB,i+ICM,i

0

1
A .

The Hamiltonian Hr
i (pi) equals the kinetic energy of the

robot and is given by

Hr
i (pi) =

1

2
pT

i (Mr)�1pi =
1

2mi
p2

i +
1

2ICM,i
h2

i ,

where Mr
i = diag (mi, ICM,i), with robot mass mi and

moment of inertia ICM,i.
Writing the dynamics of a network of N robots in compact

form gives
✓

q̇
ṗ
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Rendezvous
For each initial condition pi(0), zi(0), i = 1,2, . . . ,n,

lim
t→+∞

‖pi(t)− pj(t)‖ = 0, ∀i , j
lim

t→+∞
‖vi(t)‖ = 0, ∀i
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Formation control

Virtual coupling
System i is interconnected to its
neighbors via

ui =
∑

j∈Ni

ψij(zij),

with ψij : R→ R, C1,
nondecreasing and odd and

zij = pj − pi

Overall
In compact form

ṗ = v
v̇ = −v − DΨ(DT p)

= −v − DΨ(z)

D incidence matrix of the graph
Ψ = col(ψ1 . . . , ψm)

Introduction Event-triggered controllers Hybrid model Analytical guarantees Self-triggered controllers Simulation results Conclusions

Feedback laws

Feedback laws [Arcak, 2007]
(i ∈ I)

ui =
∑

j∈Ni

ψij (zij ),

with
zij := pj − pi

and

• Ni is the set of neighbours of
the node i ∈ I

• ψij is
• continuously differentiable
• nondecreasing
• odd
• ψij = ψji for i ∈ I and j ∈ Ni

u1 = ψ12(z12) + ψ13(z13) + ψ14(z14)

Séminaire du groupe MAC, 4 juin 2014 11/36 Romain Postoyan - Université de Lorraine, CNRS (Nancy)
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Energy-based analysis

Networked system + virtual coupling

ṗ1 = v1
v̇1 = −v1 + ψ(p2 − p1)

ṗ2 = v2
v̇2 = −v2 + ψ(p1 − p2)

Energy-based (Lyapunov) analysis I

Consider 2 agents (n = 2) evolving on a line (pi , vi ∈ R) and let

q = (z, v), with z = p2 − p1

and define

Uphys(q) :=
1
2

(v2
1 + v2

2 )
︸ ︷︷ ︸

kinetic

+

∫ z

0
ψ(s)ds

︸ ︷︷ ︸
potential

= 1
2vT v +

∫ z

0
1T Ψ(s)ds
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Energy-based analysis

Energy-based (Lyapunov) analysis II

d
dt

Uphys(q) = = −v2
1 − v2

2 + (v1 − v2)ψ(z) + ψ(z)(v2 − v1)

= −v2
1 − v2

2

Energy is dissipated until system comes to a stop
If v = 0 and z 6= 0 then virtual force ψ(z) kicks in
The system comes to a stop iff z = 0
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Ideal scenario

Continuous measurements
Continuous control updates

Introduction Event-triggered controllers Hybrid model Analytical guarantees Self-triggered controllers Simulation results Conclusions

Problem statement

• Continuous measurements

• Continuous control updates

Séminaire du groupe MAC, 4 juin 2014 3/36 Romain Postoyan - Université de Lorraine, CNRS (Nancy)
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Cyber-physical scenario

To limit network usage
To reduce sensor wear
To reduce actuator wear

Introduction Event-triggered controllers Hybrid model Analytical guarantees Self-triggered controllers Simulation results Conclusions

Problem statement

To limit control updates and communication → Self-triggered control

+ to limit the network usage

+ to reduce sensors batteries consumption

- more control updates than event-triggered control

Séminaire du groupe MAC, 4 juin 2014 5/36 Romain Postoyan - Université de Lorraine, CNRS (Nancy)
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Problem statement

Communication/computation limitations Agents update their
control and/or take their measurements at t ij

` , ` ∈ Z,

ui =
∑

j∈Ni

ψij(ẑij)

where {
˙̂zij(t) = 0, t 6= t ij

`

ẑij(t+) = zij , t = t ij
`

Problem

For each agent i and each neighbor j ∈ Ni , determine sequence t ij
` so

that rendezvous is achieved.
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Energy-based analysis

Energy function n = 2

Uphys(q) :=
1
2

(v2
1 + v2

2 )
︸ ︷︷ ︸

kinetic

+

∫ z

0
ψ(s)ds

︸ ︷︷ ︸
potential

Energy-based (Lyapunov) analysis

d
dt

Uphys(q) = = −v2
1 − v2

2 + (v1 − v2)ψ(ẑ) +ψ(z)(v2 − v1)

6= −v2
1 − v2

2

Due to the sampling, energy may not be dissipated
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Cyber-physical (Lyapunov) energy function

Cyber-physical (Lyapunov) energy function

U(q) := Uphys(q) + Ucyber(q)

where

Uphys(q) :=
1
2

(v2
1 + v2

2 ) +

∫ z

0
ψ(s)ds

and

Ucyber(q) :=
1
2
φ ·
(
ψ(ẑ)− ψ(z)

)2

is the “energy” of the sampling error weighted via positive φ .
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Analysis

Lyapunov analysis

d
dt

U(q) = −v2
1 − v2

2 + (v1 − v2)ψ(ẑ) +ψ(z)(v2 − v1)

−1
2

dφ
dt
(
ψ(ẑ)− ψ(z)

)2

−φ
(
ψ(ẑ)− ψ(z)

)
∇ψ(z)(v2 − v1)

The choice of dφ
dt as

dφ
dt

= −1
σ

(1 + φ2 (∇ψ(z))2)

and a completion of the squares argument yields

d
dt

U(q) ≤ (−1 + 2σ)(v2
1 + v2

2 ) ≤ 0.

where σ measures the convergence degradation.
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Clock

The “weight” φ ∈ [a,b] plays the role of a clock

Clock dynamics

φ̇ = −1
σ

(
1 + φ2 (∇ψ(z))2

)
φ ∈ [a,b],

φ+ = b φ = a.

where
σ ∈ (0, 1

2)

0 < a < b

Event-triggered control requires z
Self- and time-triggered implementations avoid this
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Event-based coordination

Theorem
1 The set

{(p, v , ẑ, φ) : p1 = p2 = . . . = pn, v = 0, ẑ = 0 and φ ∈ [a,b]n}

is globally asymptotically stable
2 The solutions have a uniform semiglobal dwell-time

Second-order heterogeneous
nonlinear agents in Rp

ṗi = yi
v̇i = fi(vi ,ui)
yi = hi(vi)

General coordination
problems z ij→Aij

Self- and time-triggered rules

De Persis–Postoyan. A Lyapunov
redesign of coordination algorithms
for cyberphysical systems. IEEE
Transactions on Automatic
Control arXiv 1404.0576
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Lyapunov functions and microgrids
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A microgrid model

A network reduced micro-grid model

θ̇ = ω
TP ω̇ = −(ω − ω∗)− KP(P − P∗) + uP

TQV̇ = f (V ,Q,uQ)

θ ∈ Tn voltage phase angles
ω ∈ Rn frequency
V ∈ Rn voltage magnitudes

Active and reactive power

Pi =
∑

j∈Ni
BijViVj sin θij , θij := θi − θj

Qi = BiiV 2
i −

∑
j∈Ni

BijViVj cos θij , θij := θi − θj

Comparison
TP ω̇︸︷︷︸

Mv̇

= −(ω − ω∗)︸ ︷︷ ︸
−(v−v∗)

−KP(DΓ(V )sin(DT θ) − P∗)︸ ︷︷ ︸
DΨ(DT p)−DΨ(DT p∗)

+uP
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Voltage dynamics

f (V ,Q,uQ) represents various voltage dynamics/controllers

f (V ,Q, uQ) uQ

Droop −V − KQQ + uQ −V ∗ − KQQ∗

Quadratic droop −[V ]V − KQQ + [V ]uQ V ∗

Reactive current −[V ]−1Q + uQ [V ]−1Q
Reactive consensus −[V ]KQLQKQQ + [V ]uQ KQLQKQQ

Droop Zhong-Hornik ‘12, Schiffer et al ‘14
Quadratic droop Simpson-Porco et al ‘15
Reactive current Machowski et al ‘08, DP-Monshizadeh ‘15
Reactive consensus Schiffer et al ‘15

TQ,i V̇i = ViKQ,i

n∑

j=1

aQ
ij (KQ,jQj − KQ,iQi) + ViuQi
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Energy functions

Uphys(q) :=
1
2
ωT K−1

P TPω
︸ ︷︷ ︸

kinetic

+

∫ z

0
1T Γ(V )sin(DT s)ds

︸ ︷︷ ︸
potential

+H(V )

H(V )

Droop −1T KQV − (Q + K−1
Q V )ln(V )

Quadratic droop 1
2V T K−1

Q V
Reactive current 0

Reactive consensus −Q
T

ln(V )

Lyapunov (energy) functions are crucial to
Obtain large signal stability analysis (no linearization)
Remove frequency-voltage decoupling assumption
Interconnect with dynamic feedback
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Frequency synchronization and voltage stability

Reactive power consensus Solutions to microgrid dynamics

θ̇ = ω
TP ω̇ = −(ω − ω∗)− KP(P − P∗) + uP

TQV̇ = −[V ]KQLQKQQ + [V ]uQ

in closed-loop with uQ = uQ and

ξ̇ = −LPξ + K−1
P (ω∗ − ω)

uP = ξ

locally converge to ω = ω∗ and V = V ∗, where

1T K−1
Q ln(V (t)) =1T K−1

Q ln(V ∗) = 1T K−1
Q ln(V (0))
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Power sharing

Active power sharing If droop coefficients are selected proportionally
(kP)iP∗i = (kP)jP∗j , then

(kP)iP i = (kP)jP j ∀i , j

Reactive power consensus

(kQ)iQi = (kQ)jQj

De Persis–Monshizadeh. A modular design of incremental Lyapunov
functions for microgrid control with power sharing. arXiv 1404.0576

C. De Persis (RUG) CPS and Lyapunov functions KTH ACCESS-FORCES 25 / 38



Power networks as a cyber-physical systemICT for Network Systems
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Control under Denial of Service
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Cyber-physical systems

Data loss due to human action
Number of documented cyber attacks have increased very rapidly
in recent years

S. Amin, A. Cárdenas, and S. Sastry, 2009
Y. Mo, T. Hyun-Jin Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig,
and B. Sinopoli, 2012

Cyber attacks in the form of Denial-of Service (DoS) can be
trivially launched against wireless-based communication
infrastructures

K. Pelechrinis, M. Iliofotou and S. Krishnamurthy, 2011

This part of the talk
Stabilization of linear control systems under DoS attacks on the
feedback channel
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Framework

Process
ẋ(t) = Ax(t) + Bu(t) + w(t)

Block diagram

resilience against DoS attacks being achieved thanks to
the design of the control update rule. Perhaps, the closest
reference to our research is Foroush and Mart́ınez (2013).
In that paper, the authors consider a situation where the
attack strategy is known to be periodic, though of unknown
period and duration. The goal is then to identify period
and duration of the jamming activity so as to determine
the time-intervals where communication is possible. Their
framework should be therefore looked at as complementary
more than alternative to the present one, since the former
deals with cases where one can adjust the control updates
so that they never fall into the jamming activity periods.
Such a feature is conceptually impossible to achieve in
scenarios such as the one considered in this paper, where
the jamming strategy is neither known nor prefixed (the
attacker can modify on-line the attack strategy).

Due to lack of space, proofs have been omitted. They can
be found in De Persis and Tesi (2013).

2. FRAMEWORK AND PROBLEM OVERVIEW

The framework of interest is represented in Figure 1.
We consider a remote plant-operator setup, in which the
process to be controlled is described by the di↵erential
equation

ẋ(t) = Ax(t) + Bu(t) (1)

where t 2 R�0; x 2 Rnx is the state and u 2 Rnu is the
control input; We assume that a state-feedback matrix K
has been designed such that all the eigenvalues of A+BK
have negative real part.

The control action is implemented via a sample-and-hold
device. Let {tk}, k 2 N, t0 := 0, represent the sequence
of time instants at which it is desired to update the
control action. At the present stage, for simplicity of
exposition, we simply refer to the “Logic” block as the
device responsible for generating {tk}. Thus, whatever the
logic underlying this block, in the ideal situation where
data can be sent and received at any desired instant of
time, the control input applied to the process would be
uideal(t) = K x(tk) for all t 2 [tk, tk+1[.

We shall refer to Denial-of-Service (DoS, for short) as the
phenomenon that prevents uideal from being executed at
each desired tk. In this paper, we consider the case of a DoS
simultaneously a↵ecting both control and measurement
channels. This amounts to assuming that, in the presence
of DoS, data can be neither sent nor received. Let {hn},
n 2 N, h0 � 0, represent the sequence of DoS positive
edge-triggering, i.e. the time instants at which the DoS
exhibits a transition from, say, zero (communication is
possible) to, say, one (communication is interrupted).
Accordingly,

Hn := [hn, hn + ⌧n[ (2)

will denote the n-th DoS time-interval, of a length ⌧n, over
which communication is not possible. We then assume
that, in the presence of DoS, the actuator generates an
input that is based on the most recently received control
signal. Specifically, denote the set of time-instants up to
time t where communication is possible by

Fig. 1. Block diagram of the closed-loop system under DoS
on the communication channels.

⇥(t) := [0, t] \
[

n2N
Hn (3)

where \ means relative complement.

Accordingly, the control input applied to the process can
be expressed as

u(t) = K x(tk(t)) (4)

where

k(t) :=

(�1, if ⇥(t) = ;

sup { k 2 N | tk 2 ⇥(t) } , otherwise
(5)

denote the last (up to the current time) successful control
update. Notice that h0 = 0 implies k(0) = �1, which raises
the question of assigning a value to the control input when
communication is not possible at the process start-up. In
this respect, we assume that when h0 = 0 then u(0) = 0,
and we let x(t�1) := 0 for notational consistency.

2.1 Problem overview

To begin with, we introduce the following definition.

Definition 1. Consider the control system ⌃ composed of
(1) under a state-feedback control as in (4). ⌃ is said
to be globally exponentially stable (GES) if there exist
↵, � 2 R>0 such that

kx(t)k  ↵e��tkx(0)k (6)

for all t 2 R�0 and for all x(0) 2 Rnx , where k · k stands
for Euclidean norm. 2

Various approaches have been considered assuring GES
to the control system in the absence of DoS; e.g., see
Heemels et al. (2012) for recent results and a discussion on
questions related to periodic vs aperiodic implementations.
A natural question then arises on whether mechanisms do
exist that are capable of preserving GES under DoS.

In this respect, some preliminary considerations are in
order. Whatever the rule generating the {tk}-sequence,
ultimate goal of the “Logic” block is to update the control
action frequently enough so that stability is not destroyed.
While in principle this is always possible in the absence of
DoS, the same conclusions do not hold if DoS is allowed to
be arbitrary. For instance, for open-loop unstable systems,
one immediately sees that if ⌧0 = 1 then stability is lost
irrespective of how {tk} is chosen. These points motivate
the following restriction on the admissible DoS signals
considered throughout the paper.

Given a sequence {hn}, let

Logic Device responsible for generating the sampling sequence

{tk}, k ∈ N, t0 := 0

Controller Sample-and-hold

uideal(t) = K x(tk ), ∀ t ∈ [tk , tk+1[
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Denial-of-Service (DoS)

Denial of Service

Hn := [hn,hn + τn[, n ∈ N, h0 ≥ 0

Hn n-th DoS interval
τn duration of Hn

Actual control
u(t) = Kx(tk(t)), tk(t) time of the last successful update
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Problem formulation

resilience against DoS attacks being achieved thanks to
the design of the control update rule. Perhaps, the closest
reference to our research is Foroush and Mart́ınez (2013).
In that paper, the authors consider a situation where the
attack strategy is known to be periodic, though of unknown
period and duration. The goal is then to identify period
and duration of the jamming activity so as to determine
the time-intervals where communication is possible. Their
framework should be therefore looked at as complementary
more than alternative to the present one, since the former
deals with cases where one can adjust the control updates
so that they never fall into the jamming activity periods.
Such a feature is conceptually impossible to achieve in
scenarios such as the one considered in this paper, where
the jamming strategy is neither known nor prefixed (the
attacker can modify on-line the attack strategy).

Due to lack of space, proofs have been omitted. They can
be found in De Persis and Tesi (2013).

2. FRAMEWORK AND PROBLEM OVERVIEW

The framework of interest is represented in Figure 1.
We consider a remote plant-operator setup, in which the
process to be controlled is described by the di↵erential
equation

ẋ(t) = Ax(t) + Bu(t) (1)

where t 2 R�0; x 2 Rnx is the state and u 2 Rnu is the
control input; We assume that a state-feedback matrix K
has been designed such that all the eigenvalues of A+BK
have negative real part.

The control action is implemented via a sample-and-hold
device. Let {tk}, k 2 N, t0 := 0, represent the sequence
of time instants at which it is desired to update the
control action. At the present stage, for simplicity of
exposition, we simply refer to the “Logic” block as the
device responsible for generating {tk}. Thus, whatever the
logic underlying this block, in the ideal situation where
data can be sent and received at any desired instant of
time, the control input applied to the process would be
uideal(t) = K x(tk) for all t 2 [tk, tk+1[.

We shall refer to Denial-of-Service (DoS, for short) as the
phenomenon that prevents uideal from being executed at
each desired tk. In this paper, we consider the case of a DoS
simultaneously a↵ecting both control and measurement
channels. This amounts to assuming that, in the presence
of DoS, data can be neither sent nor received. Let {hn},
n 2 N, h0 � 0, represent the sequence of DoS positive
edge-triggering, i.e. the time instants at which the DoS
exhibits a transition from, say, zero (communication is
possible) to, say, one (communication is interrupted).
Accordingly,

Hn := [hn, hn + ⌧n[ (2)

will denote the n-th DoS time-interval, of a length ⌧n, over
which communication is not possible. We then assume
that, in the presence of DoS, the actuator generates an
input that is based on the most recently received control
signal. Specifically, denote the set of time-instants up to
time t where communication is possible by

Fig. 1. Block diagram of the closed-loop system under DoS
on the communication channels.

⇥(t) := [0, t] \
[

n2N
Hn (3)

where \ means relative complement.

Accordingly, the control input applied to the process can
be expressed as

u(t) = K x(tk(t)) (4)

where

k(t) :=

(�1, if ⇥(t) = ;

sup { k 2 N | tk 2 ⇥(t) } , otherwise
(5)

denote the last (up to the current time) successful control
update. Notice that h0 = 0 implies k(0) = �1, which raises
the question of assigning a value to the control input when
communication is not possible at the process start-up. In
this respect, we assume that when h0 = 0 then u(0) = 0,
and we let x(t�1) := 0 for notational consistency.

2.1 Problem overview

To begin with, we introduce the following definition.

Definition 1. Consider the control system ⌃ composed of
(1) under a state-feedback control as in (4). ⌃ is said
to be globally exponentially stable (GES) if there exist
↵, � 2 R>0 such that

kx(t)k  ↵e��tkx(0)k (6)

for all t 2 R�0 and for all x(0) 2 Rnx , where k · k stands
for Euclidean norm. 2

Various approaches have been considered assuring GES
to the control system in the absence of DoS; e.g., see
Heemels et al. (2012) for recent results and a discussion on
questions related to periodic vs aperiodic implementations.
A natural question then arises on whether mechanisms do
exist that are capable of preserving GES under DoS.

In this respect, some preliminary considerations are in
order. Whatever the rule generating the {tk}-sequence,
ultimate goal of the “Logic” block is to update the control
action frequently enough so that stability is not destroyed.
While in principle this is always possible in the absence of
DoS, the same conclusions do not hold if DoS is allowed to
be arbitrary. For instance, for open-loop unstable systems,
one immediately sees that if ⌧0 = 1 then stability is lost
irrespective of how {tk} is chosen. These points motivate
the following restriction on the admissible DoS signals
considered throughout the paper.

Given a sequence {hn}, let

Stabilization in the presence of DoS
Design the logic generating the sampling sequence {tk} such that the
closed-loop system

ẋ(t) = Ax(t) + BKx(tk(t)) + w(t)

is input-to-state stable, namely

‖x(t)‖ ≤ αe−βt‖x(0)‖+ γ‖wt‖∞
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Admissible DoS signals

Admissible DoS
1 The DoS sequence {hn}, n ∈ N, is such that

inf
n∈N

τn = τ∗ > 0

2 there exist constants κ ∈ R≥0 and p ∈ (0,1) such that

|Ξ(t)| ≤ κ+ pt

for all t ∈ R≥0

where

Ξ(t) :=

(⋃

n∈N
Hn

) ⋂
[0, t ]

is the total interval of DoS within [0, t ]
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Sampling logic

Control gain K is such that A + BK is Hurwitz

ẋ(t) = Ax(t) + BKx(tk(t)) = (A + BK )x(t) + BKe(t)

Control update law Define the
sampling error

e(t) := x(tk(t))− x(t)

and the control update law
[Tabuada 2007]

‖e(t)‖ ≤ σ‖x(t)‖, ∀ t /∈ Ξ(t)

⌅(t) :=
[

n2N
Hn

\
[0, t] (7)

denote the total interval of DoS up to the current time.
Given an interval I, let |I| denote its length.

Assumption 1. The DoS sequence {hn}, n 2 N, is such
that infn2N ⌧n > 0. Moreover, there exist constants  2
R�0 and ⌧ 2 R>0 such that

|⌅(t)|  +
t

⌧
(8)

for all t 2 R�0. 2

Remark 1. Condition infn2N ⌧n > 0 ensures that {hn} is
non-Zeno and that infinitely many DoS intervals always
have strictly positive Lebesgue measure. Inequality (8)
expresses the property that the DoS satisfies a slow-on-the-
average type condition, as introduced by Hespanha and
Morse (1999) for hybrid systems analysis. In the present
context, the rationale behind (8) is that if  = 0 then the
average time interval of DoS is at least ⌧ . On the other
hand,  > 0 allows for consideration of DoS at the process
start-up, i.e. when h0 = 0. 2

3. MAIN RESULTS

In this section, a simple control update rule is considered,
which is capable of preserving GES for any DoS signal
satisfying Assumption 1 with ⌧ su�ciently large. A dis-
cussion on the results along with implementation aspects
is deferred to the next section.

Let

e(t) := x(tk(t)) � x(t) (9)

where t 2 R�0, represent the error between the value of the
process state at the last successful control update and the
value of the process state at the current time. Consistent
with the comments made right after (4), if h0 = 0 then
e(t) = �x(t) for all t 2 H0. The closed-loop system
composed of (1) and (4) can be then rewritten as

ẋ(t) = �x(t) + BKe(t) (10)

where � := A + BK. Consider now the following control
update rule

ke(t)k  �kx(t)k, 8 t /2 ⌅(t) (11)

where � 2 R>0 is a free design parameter. As shown
hereafter, such an update rule is capable of preserving
GES for any DoS signal satisfying Assumption 1 with ⌧
su�ciently large.

Condition (11) was first introduced in Tabuada (2007) in
the context of event-based control. The di↵erence here is
that, due to the presence of DoS, one cannot enforce this
condition for all t � 0, but only over those time-intervals
where communication is indeed possible.

To fix the ideas, it is convenient to briefly comment on
a possible implementation of condition (11), referring the
reader to Section 4 for a thorough discussion and possible
variations. The simplest architecture one can think of for
implementing (11) is as in Figure 2(a). The “Logic” block
measures continuously the state x, computes the error
signal e and detects the instants tk at which (11) holds with

Fig. 2. Ideal mechanism for the fulfillment of (11): (a)
absence of DoS; (b) presence of DoS.

the equality relation. At these instants, the logic samples
the state and attempt to transmit it to the controller. In
accordance with (9), if the control update is successful then
e is reset to zero. Under DoS, the logic turns to a di↵erent
operating mode by continuously attempting to update the
control action, as depicted in Figure 2(b). In this way, at
time hn + ⌧n when communication is restored, the logic
is able to transmit immediately the sampled measurement
so that (11) is enforced.

In the following subsection, for ease of exposition, we
assume that this is indeed the case. In practice, when
implementing (11) on a digital platform, due to the finite
sampling rate, a time interval will necessarily elapse from
the time hn + ⌧n at which DoS is over, to the time at
which the logic successfully samples and transmits. As
anticipated, this case will be addressed in Section 4.

3.1 Stability analysis

We now study the trajectories of the closed-loop system
composed of (1) and (4) with control update law (11).
An alternative approach to stability analysis, based on
Lyapunov functions, is discussed in Appendix A.

Observe first that � is a stability matrix by hypothesis.
Then there exist µ 2 R�1 and � 2 R>0 such that
ke�tk  µe��t for all t 2 R�0, where µ and � can be
easily computed using algebraic matrix theory. This, in
turns, implies

kx(t)k  !1e
��t +

Z

⇥(t)

!2 e��(t�s)ke(s)kds

+

Z

⌅(t)

!2 e��(t�s)ke(s)kds (12)

having defined !1 := µkx(0)k and !2 := µkBKk where,
given a matrix M , kMk denotes its spectral norm. We now
evaluate the two integral terms in the above formula.

Consider first the set ⇥(t), over which (11) holds by
construction. The corresponding integral term can be
therefore upper bounded as
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Main result

Closed-loop system (w(t) = 0)

Σ : ẋ(t) = Ax(t) + BKx(tk(t)) = (A + BK )x(t) + BKe(t)

Theorem
There exist

γ1(A,B,K , σ), γ2(A,B,K , σ) > 0

such that Σ is GES for any DoS sequence satisfying

|Ξ(t)| ≤ κ+ pt

with
p <

ω1

ω1 + ω2

Key inequality V (x(t)) ≤ e−ω1(t−|Ξ(t)|)+ω2|Ξ(t)|)V (x(0))
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Comments

Lyapunov analysis of cyberphysical systems under DoS permits
extension to

nonlinear systems1

network systems2

De Persis-Tesi Input-to-State Stabilizing Control under
Denial-of-Service. IEEE Transactions on Automatic Control, 1–15,
10.1109/TAC.2015.2416924.

1 De Persis–Tesi. On resilient control of nonlinear systems under
Denial-of-Service. Proc. 53rd IEEE-CDC, 5254 - 5259, 2014.
2 Senejohnny–Tesi–De Persis. Self-triggered coordination over a shared network
under Denial-of-Service. Proc. 54th IEEE-CDC, 2015.
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Conclusions
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Conclusions

Lyapunov (energy) functions for complex networks
Cyber-physical Lyapunov function
Robustness to sampling and data loss

CPL MC DoS
CPL ? ?

MC ? +CPL ?
DoS ? +CPL ?
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Olimpia Zagnoli
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