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@ Cyber-physical Lyapunov functions
@ Energy functions for microgrids
@ Control under DoS
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Cyber-physical Lyapunov functions
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A second-order networked system

Yc,i
YB,i
Ya,i
TA TB,i Zo
A second-order networked system
pi = Vi
Vi = —vitu, i€Z={1,2,...,n}

p;i € RP position
v; € RP velocity
u; € RP torque

v

C. De Persis (RUG) CPS and Lyapunov functions KTH ACCESS-FORCES 4/38



A second-order networked system

Yc,i
YB,i

YA,

Rendezvous

For each initial condition p;(0), z;(0), i = 1,2,...,n,

Jim loi() ~ g0l =0, Vi
%—i—oo . .
Jdim v =0, i
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Formation control

Virtual coupling
System i/ is interconnected to its

neighbors via In compact form
=2, vil) 6 Y v — DU(D'p)
JEN; = V=
= —v-Dv(2)

with ¢ : R - R, CT,
nondecreasing and odd and D incidence matrix of the graph
v =col(i1...,¥m)

Zj = Pj = Pi

@ 212

o %
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Energy-based analysis

Networked system + virtual coupling

pro= v p2 = Vo

Vi = —vit+P(p2—p1) V2 = —va+y(p1—p2)
Energy-based (Lyapunov) analysis |
Consider 2 agents (n = 2) evolving on a line (p;, v; € R) and let

q:(Z, V)7 with  z = py — pi
and define
T 2, 2 ‘
Uns(@) = (8 +18)+ [ v(s)ds

0
—_— -
kinetic potential

V4
= ;v7v+/ 17w(s)ds
0
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Energy-based analysis

Energy-based (Lyapunov) analysis Il

d
&Uphys(q) = = V2 VE+(vy — v2)Y(2) +¥(Z)(va — vy)
R

@ Energy is dissipated until system comes to a stop
@ If v =0and z # 0 then virtual force (z) kicks in
@ The system comes to a stop iff z=0
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Ideal scenario

@ Continuous measurements
@ Continuous control updates
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Cyber-physical scenario

@ To limit network usage
@ To reduce sensor wear
@ To reduce actuator wear

e =1®
\\\ \O
Sn ey

070
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Cyber-physical scenario

@ To limit network usage
@ To reduce sensor wear
@ To reduce actuator wear
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Cyber-physical scenario

@ To limit network usage
@ To reduce sensor wear
@ To reduce actuator wear
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Problem statement

@ To limit network usage
@ To reduce sensor wear
@ To reduce actuator wear

VG TR

: 0
a0
O 70
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Problem statement

Communication/computation limitations Agents update their
control and/or take their measurements at tg, {eZ,

uo= > (%)
JeN

where

{é,-j(t) =0, t#£t

Zi(tt) = z, t=t/

Problem

For each agent i and each neighbor j € N, determine sequence tg SO
that rendezvous is achieved.
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Energy-based analysis

Energy function n =2

1 z
Uphys(q) = E(V12 + V22) +/ Y(s)ds
kinetic potential

Energy-based (Lyapunov) analysis

O Ums(@) = = V2~ VE+ (Vi — w)(2) + (22— )

2 _ 2
# ViV

Due to the sampling, energy may not be dissipated )
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Cyber-physical (Lyapunov) energy function

Cyber-physical (Lyapunov) energy function

Uq) = Uphys(q) + Ucyber(q)
where
1, 5 2 ‘
Uns(@) = 5( + )+ [ w(s)ds
and 1
Ucyber(q) = E¢ : ('(,b(f) - 7vb(z))z

is the “energy” of the sampling error weighted via positive ¢ .
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Lyapunov analysis

GU@) = —VE— VBt (i vahb(2) + (@) (2~ i)
1do, 2
*EE(?/)(Z) - Q/’(Z))

—o(¥(2) = ¥(2)) Vi(2)(v2 — v1)
The choice of % as

dp 1

5 = (1 F V@)

and a completion of the squares argument yields

d
aU(q) <(-1420) (V2 +v3) <0.
where ¢ measures the convergence degradation.
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The “weight” ¢ € |a, b] plays the role of a clock

Clock dynamics

. 1
o = —(1+#(Vu@)) ¢clabl,
¢t = b ¢=a.
where
@ g€ (0, %)
@e0<ax<xhb
Event-triggered control requires z
Self- and time-triggered implementations avoid this J
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Event-based coordination

@ The set
{(p,v,2,9) : pr=p2=...=pp,v=0,Z2=0and ¢ € [a,b]"}

is globally asymptotically stable
@ The solutions have a uniform semiglobal dwell-time

@ Second-order heterogeneous

nonlinear agents in RP @ Self- and time-triggered rules

i = Y De Persis—Postoyan. A Lyapunov
vi = fi(vi,u) redesign of coordination algorithms
yi = hi(vj) for cyberphysical systems. IEEE
Transactions on Automatic
@ General coordination Control arxiv 1404.0576

problems z;— A;;
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Lyapunov functions and microgrids
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A microgrid model

A network reduced micro-grid model

0 = w
Tpd{ = —(w—w*)—Kp(P—P*)+up
TqV = f(V,Q ug)

6 € T" voltage phase angles

w € R" frequency
V € R" voltage magnitudes

Active and reactive power

_ Trir = —(w—w")—Ke(Dr(V)sin(D'6) — P*) +up
Comparison ~~ —_——
My —(v—v*) DW(DT p)—DW(DT p*)
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Voltage dynamics

f(V, Q, ug) represents various voltage dynamics/controllers

H | f(V, Q, uq) | Ua |
Droop -V — KqQ + uq —V* — KqQ*
Quadratic droop —[V]V - KqQ+ [V]ug | V*

Reactive current —[VI7'Q+ uq vl—'Q
Reactive consensus | —[V]KqLgKqQ + [V]ug | KqLloKoQ

Droop Zhong-Hornik ‘12, Schiffer et al ‘14

Quadratic droop Simpson-Porco et al ‘15

Reactive current Machowski et al ‘08, DP-Monshizadeh ‘15
Reactive consensus Schiffer et al ‘15

n
TaiVi=ViKa; ) ai(Ka;Q — KaiQ) + Viug,
=
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Energy functions

z
Upnys(q) = %wTK,;1 Tow + / 17F(V)sin(DTs)ds +H(V)
— &
kinetic potential
H | A
Droop —1TKqV — (Q+ K, V)In(V)
Quadratic droop SVIK,'V
Reactive current 0
Reactive consensus —C_DTIn( V)

Lyapunov (energy) functions are crucial to
@ Obtain large signal stability analysis (no linearization)
@ Remove frequency-voltage decoupling assumption
@ Interconnect with dynamic feedback
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Frequency synchronization and voltage stability

Reactive power consensus Solutions to microgrid dynamics

0 = w
Tpd.} = —(w—w*)—Kp(P— P*)+UP
TQV = —[V]KQLQKQQ+ [V]UQ

in closed-loop with ug = tg and

£ = —Lpt+Kp'(w* —w)
up = §

locally converge to w = w* and V = V*, where

17Kg! In(V(1) =17Kg" In(v*) = 17K5" In(V(0)) |
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Active power sharing If droop coefficients are selected proportionally
(kp),PI>|< = (kp)jP/*, then

(kp)iPi = (kp);P; WJJ

Reactive power consensus

(k@)iQi = (kq);Q; ]

De Persis—Monshizadeh. A modular design of incremental Lyapunov
functions for microgrid control with power sharing. arXiv 1404.0576 }
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Power networks as a cyber-physical system

) i
Pe 01 = wq T ] R 1 X
! Mgy = —Awy +uy — P+ P§ E u i i _ sz1€M(al_01)_q1 o 0 %
X Vo= w ' il U = gy w
i : | =
o} P L
E H ) z
L H ]
Z | | P
: | ()
- P =
< o S
®) i ] >
()] H |
x | Wn! 2
o Ps 9n = Wwn i ' 05" — EEN (0 _ 0,,) _ q;1w" 0 §
Mpion = —Anwn+ Up— P;, + P§ E u ) - _}1 L (@)
Yn = wn : n: n = dn wn O
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Control under Denial of Service
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Cyber-physical systems

Data loss due to human action

@ Number of documented cyber attacks have increased very rapidly
in recent years
@ S. Amin, A. Céardenas, and S. Sastry, 2009

@ Y. Mo, T. Hyun-Jin Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig,
and B. Sinopoli, 2012

@ Cyber attacks in the form of Denial-of Service (DoS) can be
trivially launched against wireless-based communication
infrastructures

@ K. Pelechrinis, M. lliofotou and S. Krishnamurthy, 2011

This part of the talk

Stabilization of linear control systems under DoS attacks on the
feedback channel
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Framework

Process

x(t) = Ax(t) + Bu(t) + w(t)

Block diagram

Logic Device responsible for generating the sampling sequence
{tc}, keN, fh:=0
Controller Sample-and-hold
Uideal(1) = K X(tk), V't € [ti, ties [
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Denial-of-Service (DoS)

Denial of Service

Hn = [hn, hn + 'Tn[, n E N7 ho Z 0

H, n-th DoS interval
7n duration of H,

Actual control
u(t) = Kx(tkr) t(ry time of the last successful update
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Problem formulation

Network: H
: Dos ¢

Stabilization in the presence of DoS

Design the logic generating the sampling sequence {{} such that the
closed-loop system

x(t) = Ax(t) + BKx(ti(ry) + w(t)

is input-to-state stable, namely

Ix(1)]| < ae™?|Ix(0)] + ¥l Willo

v
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Admissible DoS signals
Admissible DoS

@ The DoS sequence {h,}, n € N, is such that

inf r,=7.>0
neN

@ there exist constants x € R>g and p € (0, 1) such that
I=(8)] < k+pt

forall t € R

where
=(t) := (U H,,) ([0, 1]
neN
is the total interval of DoS within [0, {]
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Sampling logic

Control gain K is such that A+ BK is Hurwitz
x(t) = Ax(t) + BKx(tx(1)) = (A+ BK)x(t) + BKe(t)

Control update law Define the
sampling error

e(t) := x(tk(y)) — x(1)

and the control update law
[Tabuada 2007]

el < allx(D)ll, vit¢=(1)

to ho t1 hg+mo t
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Main result

Closed-loop system (w(t) = 0)

S - X(t) = Ax(t) + BKX(tin) = (A + BK)x(t) + BKe(t)

Theorem
There exist

v1(A,B,K,0),7(A,B,K,0) >0
such that X is GES for any DoS sequence satisfying
I=()] < &+ pt
with
w1
w1 + wo

p <

Key inequality V(x(t)) < e «1(t=I=ON+«2=(0D v (x(0))
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Comments

Lyapunov analysis of cyberphysical systems under DoS permits
extension to

@ nonlinear systems'
@ network systems?

De Persis-Tesi Input-to-State Stabilizing Control under
Denial-of-Service. |[EEE Transactions on Automatic Control, 1—15,
10.1109/TAC.2015.2416924.

' De Persis—Tesi. On resilient control of nonlinear systems under
Denial-of-Service. Proc. 53rd IEEE-CDC, 5254 - 5259, 2014.

2 Senejohnny—-Tesi—De Persis. Self-triggered coordination over a shared network
under Denial-of-Service. Proc. 54th IEEE-CDC, 2015.
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Conclusions
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Conclusions

@ Lyapunov (energy) functions for complex networks
@ Cyber-physical Lyapunov function
@ Robustness to sampling and data loss

H H CPL ‘ MC ‘ DoS H
CPL * *

MC * +CPL %
DoS * +CPL %
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