Cyber-physical systems and Lyapunov functions

Claudio De Persis

Engineering and Technology Institute Jan Willems Center for Systems and Control University of Groningen

Joint with N. Monshizadeh (RUG), R. Postoyan (CNRS-CRAN), P. Tesi (RUG)

ACCESS-FORCES CPS Workshop KTH, Stockholm 26-27 October 2015

C. De Persis (RUG)

- Cyber-physical Lyapunov functions
- Energy functions for microgrids
- Control under DoS

Cyber-physical Lyapunov functions

A second-order networked system

A second-order networked system

$$\dot{p}_i = v_i$$

 $\dot{v}_i = -v_i + u_i, \quad i \in \mathcal{I} = \{1, 2, \dots, n\}$

- $p_i \in \mathbb{R}^p$ position
- $v_i \in \mathbb{R}^p$ velocity
- $u_i \in \mathbb{R}^p$ torque

A second-order networked system

Rendezvous

For each initial condition $p_i(0), z_i(0), i = 1, 2, ..., n$,

$$\lim_{t \to +\infty} \|\boldsymbol{p}_i(t) - \boldsymbol{p}_j(t)\| = 0, \quad \forall i, j$$
$$\lim_{t \to +\infty} \|\boldsymbol{v}_i(t)\| = 0, \quad \forall i$$

Formation control

Virtual coupling

System *i* is interconnected to its neighbors via

$$u_i = \sum_{j \in \mathcal{N}_i} \psi_{ij}(z_{ij}),$$

with $\psi_{ij} : \mathbb{R} \to \mathbb{R}, C^1$, nondecreasing and odd and

$$z_{ii} = p_i - p_i$$

Overall

In compact form

$$\dot{p} = v \dot{v} = -v - D\Psi(D^T p) = -v - D\Psi(z)$$

D incidence matrix of the graph $\Psi = col(\psi_1 \dots, \psi_m)$

Energy-based analysis

Networked system + virtual coupling

$$\dot{p}_1 = v_1$$

 $\dot{v}_1 = -v_1 + \psi(p_2 - p_1)$
 $\dot{p}_2 = v_2$
 $\dot{v}_2 = -v_2 + \psi(p_1 - p_2)$

Energy-based (Lyapunov) analysis I

Consider 2 agents (n = 2) evolving on a line ($p_i, v_i \in \mathbb{R}$) and let

$$q = (z, v)$$
, with $z = p_2 - p_1$

and define

$$U_{\text{phys}}(q) := \underbrace{\frac{1}{2}(v_1^2 + v_2^2)}_{kinetic} + \underbrace{\int_0^z \psi(s)ds}_{potential}$$
$$= \frac{1}{2}v^Tv + \int_0^z \mathbb{1}^T\Psi(s)ds$$

Energy-based (Lyapunov) analysis II

$$\frac{d}{dt}U_{\rm phys}(q) = = -v_1^2 - v_2^2 + (v_1 - v_2)\psi(z) + \psi(z)(v_2 - v_1)$$

= $-v_1^2 - v_2^2$

- Energy is dissipated until system comes to a stop
- If v = 0 and $z \neq 0$ then virtual force $\psi(z)$ kicks in
- The system comes to a stop iff z = 0

Ideal scenario

- Continuous measurements
- Continuous control updates

Cyber-physical scenario

- To limit network usage
- To reduce sensor wear
- To reduce actuator wear

Cyber-physical scenario

- To limit network usage
- To reduce sensor wear
- To reduce actuator wear

Cyber-physical scenario

- To limit network usage
- To reduce sensor wear
- To reduce actuator wear

Problem statement

- To limit network usage
- To reduce sensor wear
- To reduce actuator wear

Communication/computation limitations Agents update their control and/or take their measurements at t_{ℓ}^{ij} , $\ell \in \mathbb{Z}$,

$$u_i = \sum_{j \in \mathcal{N}_i} \psi_{ij}(\hat{z}_{ij})$$

where

$$\left\{ egin{array}{ccc} \dot{\hat{z}}_{ij}(t) &=& 0, \quad t
eq t_\ell^{ij} \ \hat{\hat{z}}_{ij}(t^+) &=& z_{ij}, \quad t=t_\ell^{ij} \end{array}
ight.$$

Problem

For each agent *i* and each neighbor $j \in N_i$, determine sequence t_{ℓ}^{ij} so that rendezvous is achieved.

Energy function n = 2

$$U_{\text{phys}}(q) := \underbrace{\frac{1}{2}(v_1^2 + v_2^2)}_{kinetic} + \underbrace{\int_0^z \psi(s)ds}_{potential}$$

Energy-based (Lyapunov) analysis

$$\frac{d}{dt}U_{\text{phys}}(q) = -v_1^2 - v_2^2 + (v_1 - v_2)\psi(\hat{z}) + \psi(z)(v_2 - v_1)$$

$$\neq -v_1^2 - v_2^2$$

Due to the sampling, energy may **not** be dissipated

Cyber-physical (Lyapunov) energy function

$$U(q) := U_{phys}(q) + U_{cyber}(q)$$

where

$$U_{\mathsf{phys}}(q) := rac{1}{2}(v_1^2 + v_2^2) + \int_0^z \psi(s) ds$$

and

$$m{U}_{ ext{cyber}}(m{q}) := rac{1}{2} \phi \cdot ig(\psi(\hat{m{z}}) - \psi(m{z})ig)^2$$

is the "energy" of the sampling error weighted via positive ϕ .

Analysis

Lyapunov analysis

$$\frac{d}{dt}U(q) = -v_1^2 - v_2^2 + (v_1 - v_2)\psi(\hat{z}) + \psi(z)(v_2 - v_1) \\ -\frac{1}{2}\frac{d\phi}{dt}(\psi(\hat{z}) - \psi(z))^2 \\ -\phi(\psi(\hat{z}) - \psi(z))\nabla\psi(z)(v_2 - v_1)$$

The c

hoice of
$$\frac{d\phi}{dt}$$
 as

$$\frac{d\phi}{dt} = -\frac{1}{\sigma}(1+\phi^2(\nabla\psi(z))^2)$$

and a completion of the squares argument yields

$$\frac{d}{dt}U(q) \le (-1+2\sigma)(v_1^2+v_2^2) \le 0.$$

where σ measures the convergence degradation.

C. De Persis (RUG)

The "weight" $\phi \in [a, b]$ plays the role of a clock

Clock dynamics $\dot{\phi} = -\frac{1}{\sigma} \left(1 + \phi^2 \left(\nabla \psi(z) \right)^2 \right) \quad \phi \in [a, b],$ $\phi^+ = b \qquad \phi = a.$

where

- $\sigma \in (0, \frac{1}{2})$
- 0 < *a* < *b*

Event-triggered control requires *z* **Self- and time-triggered** implementations avoid this

Event-based coordination

Theorem

The set

 $\{(p, v, \hat{z}, \phi) : p_1 = p_2 = \ldots = p_n, v = 0, \hat{z} = 0 \text{ and } \phi \in [a, b]^n\}$

is globally asymptotically stable

- The solutions have a uniform semiglobal dwell-time
- Second-order heterogeneous nonlinear agents in ℝ^p

$$\dot{p}_i = y_i$$

 $\dot{v}_i = f_i(v_i, u_i)$
 $y_i = h_i(v_i)$

 General coordination problems *z_{ij}→A_{ij}* • Self- and time-triggered rules

De Persis–Postoyan. A Lyapunov redesign of coordination algorithms for cyberphysical systems. IEEE Transactions on Automatic Control arXiv 1404.0576

Lyapunov functions and microgrids

A microgrid model

A network reduced micro-grid model

$$\dot{ heta} = \omega
onumber T_P \dot{\omega} = -(\omega - \omega^*) - K_P(P - P^*) + u_P
onumber T_Q \dot{V} = f(V, Q, u_Q)
onumber$$

 $\theta \in \mathbb{T}^n$ voltage phase angles $\omega \in \mathbb{R}^n$ frequency $V \in \mathbb{R}^n$ voltage magnitudes

Active and reactive power

$$P_{i} = \sum_{j \in \mathcal{N}_{i}} B_{ij} V_{i} V_{j} \sin \theta_{ij}, \quad \theta_{ij} := \theta_{i} - \theta_{j}$$

$$Q_{i} = B_{ii} V_{i}^{2} - \sum_{j \in \mathcal{N}_{i}} B_{ij} V_{i} V_{j} \cos \theta_{ij}, \quad \theta_{ij} := \theta_{i} - \theta_{j}$$
Comparison
$$\frac{T_{P} \dot{\omega}}{M^{i}} = \frac{-(\omega - \omega^{*})}{-(v - v^{*})} - \frac{K_{P} (D\Gamma(V) \sin(D^{T} \theta) - P^{*})}{D\Psi(D^{T} p) - D\Psi(D^{T} p^{*})} + u_{P}$$
C. De Persis (RUG)
$$CPS \text{ and Lyapunov functions} \qquad KTH ACCESS-FORCES \qquad 21/3$$

Voltage dynamics

 $f(V, Q, u_Q)$ represents various voltage dynamics/controllers

	$f(V, Q, u_Q)$	U _Q
Droop	$-V - K_Q Q + u_Q$	$-V^*-K_QQ^*$
Quadratic droop	$-[V]V - K_QQ + [V]u_Q$	<i>V</i> *
Reactive current	$ -[V]^{-1}Q + u_Q$	$[\overline{V}]^{-1}\overline{Q}$
Reactive consensus	$-[V]K_QL_QK_QQ+[V]u_Q$	$K_Q L_Q K_Q \overline{Q}$

Droop Zhong-Hornik '12, Schiffer *et al* '14 Quadratic droop Simpson-Porco *et al* '15 Reactive current Machowski *et al* '08, DP-Monshizadeh '15 Reactive consensus Schiffer *et al* '15

$$T_{Q,i}\dot{V}_i = V_i K_{Q,i} \sum_{j=1}^n a_{ij}^Q (K_{Q,j}Q_j - K_{Q,i}Q_i) + V_i u_{Q_i}$$

Energy functions

$$U_{\text{phys}}(q) := \underbrace{\frac{1}{2} \omega^{T} K_{P}^{-1} T_{P} \omega}_{kinetic} + \underbrace{\int_{0}^{z} \mathbb{1}^{T} \Gamma(V) \operatorname{sin}(D^{T} s) ds}_{potential} + H(V)$$

	H(V)	
Droop	$-\mathbb{1}^{T}K_{Q}V - (\overline{Q} + K_{Q}^{-1}\overline{V})\boldsymbol{ln}(V)$	
Quadratic droop	$\frac{1}{2}V^T K_Q^{-1} \overline{V}$	
Reactive current	0	
Reactive consensus	$-\overline{Q}^T ln(V)$	

Lyapunov (energy) functions are crucial to

- Obtain large signal stability analysis (no linearization)
- Remove frequency-voltage decoupling assumption
- Interconnect with dynamic feedback

C. De Persis (RUG)

CPS and Lyapunov functions

Reactive power consensus Solutions to microgrid dynamics

$$\dot{\theta} = \omega T_P \dot{\omega} = -(\omega - \omega^*) - K_P (P - P^*) + u_P T_Q \dot{V} = -[V] K_Q L_Q K_Q Q + [V] u_Q$$

in closed-loop with $u_Q = \overline{u}_Q$ and

$$\dot{\xi} = -L_P\xi + K_P^{-1}(\omega^* - \omega)$$
$$u_P = \xi$$

locally converge to $\omega = \omega^*$ and $V = V^*$, where

$$\mathbb{1}^{T} K_{Q}^{-1} \ln(V(t)) = \mathbb{1}^{T} K_{Q}^{-1} \ln(V^{*}) = \mathbb{1}^{T} K_{Q}^{-1} \ln(V(0))$$

Power sharing

Active power sharing If droop coefficients are selected proportionally $(k_P)_i P_i^* = (k_P)_j P_i^*$, then

$$(k_P)_i \overline{P}_i = (k_P)_j \overline{P}_j \quad \forall i, j$$

Reactive power consensus

$$(k_Q)_i \overline{Q}_i = (k_Q)_j \overline{Q}_j$$

De Persis-Monshizadeh. A modular design of incremental Lyapunov functions for microgrid control with power sharing. arXiv 1404.0576

Power networks as a cyber-physical system

Control under Denial of Service

Data loss due to human action

- Number of documented cyber attacks have increased very rapidly in recent years
 - S. Amin, A. Cárdenas, and S. Sastry, 2009
 - Y. Mo, T. Hyun-Jin Kim, K. Brancik, D. Dickinson, H. Lee, A. Perrig, and B. Sinopoli, 2012
- Cyber attacks in the form of Denial-of Service (DoS) can be trivially launched against wireless-based communication infrastructures
 - K. Pelechrinis, M. Iliofotou and S. Krishnamurthy, 2011

This part of the talk

Stabilization of linear control systems under DoS attacks on the feedback channel

Framework

Process

$$\dot{x}(t) = Ax(t) + Bu(t) + w(t)$$

Block diagram

Logic Device responsible for generating the sampling sequence

$$\{t_k\}, \quad k \in \mathbb{N}, \quad t_0 := 0$$

Controller Sample-and-hold

$$u_{\text{ideal}}(t) = K x(t_k), \quad \forall t \in [t_k, t_{k+1}]$$

Denial of Service

$$H_n := [h_n, h_n + \tau_n[, \quad n \in \mathbb{N}, \quad h_0 \ge 0]$$

H_n *n*-th DoS interval τ_n duration of H_n

Actual control $u(t) = Kx(t_{k(t)}), \quad t_{k(t)}$ time of the last successful update

Problem formulation

Stabilization in the presence of DoS

Design the logic generating the sampling sequence $\{t_k\}$ such that the closed-loop system

$$\dot{x}(t) = Ax(t) + BKx(t_{k(t)}) + w(t)$$

is input-to-state stable, namely

$$\|\boldsymbol{x}(t)\| \leq \alpha \boldsymbol{e}^{-\beta t} \|\boldsymbol{x}(0)\| + \gamma \|\boldsymbol{w}_t\|_{\infty}$$

Admissible DoS signals

Admissible DoS

1 The DoS sequence $\{h_n\}, n \in \mathbb{N}$, is such that

$$\inf_{n\in\mathbb{N}}\tau_n=\tau_*>0$$

2 there exist constants $\kappa \in \mathbb{R}_{\geq 0}$ and $p \in (0, 1)$ such that

 $|\Xi(t)| \leq \kappa + pt$

for all $t \in \mathbb{R}_{\geq 0}$

where

$$\Xi(t) := \left(\bigcup_{n \in \mathbb{N}} H_n\right) \bigcap [0, t]$$

is the total interval of DoS within [0, t]

C. De Persis (RUG),

Sampling logic

Control gain *K* is such that A + BK is Hurwitz

$$\dot{x}(t) = Ax(t) + BKx(t_{k(t)}) = (A + BK)x(t) + BKe(t)$$

Control update law Define the sampling error

$$\boldsymbol{e}(t) := \boldsymbol{x}(t_{k(t)}) - \boldsymbol{x}(t)$$

and the control update law [Tabuada 2007]

$$\|\boldsymbol{e}(t)\| \leq \sigma \|\boldsymbol{x}(t)\|, \quad \forall t \notin \Xi(t)$$

Main result

Closed-loop system ($\boldsymbol{w}(t) = 0$)

$$\Sigma$$
 : $\dot{x}(t) = Ax(t) + BKx(t_{k(t)}) = (A + BK)x(t) + BKe(t)$

Theorem

There exist

$$\gamma_1(A, B, K, \sigma), \gamma_2(A, B, K, \sigma) > 0$$

such that Σ is GES for any DoS sequence satisfying

 $|\Xi(t)| \leq \kappa + \rho t$

with

$$p < rac{\omega_1}{\omega_1 + \omega_2}$$

Key inequality $V(x(t)) \le e^{-\omega_1(t-|\Xi(t)|)+\omega_2|\Xi(t)|)} V(x(0))$

Comments

Lyapunov analysis of cyberphysical systems under DoS permits extension to

- nonlinear systems¹
- network systems²

De Persis-Tesi **Input-to-State Stabilizing Control under Denial-of-Service**. *IEEE Transactions on Automatic Control*, 1–15, 10.1109/TAC.2015.2416924.

¹ De Persis–Tesi. **On resilient control of nonlinear systems under Denial-of-Service**. *Proc. 53rd IEEE-CDC*, 5254 - 5259, 2014.

² Senejohnny–Tesi–De Persis. **Self-triggered coordination over a shared network under Denial-of-Service**. *Proc. 54th IEEE-CDC*, 2015.

C. De Persis (RUG)

CPS and Lyapunov functions

Conclusions

- Lyapunov (energy) functions for complex networks
- Cyber-physical Lyapunov function
- Robustness to sampling and data loss

	CPL	MC	DoS
CPL		*	*
MC	*		+CPL *
DoS	*	+CPL *	
	·		

FOR TWO

Q

UESTIONS?