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Learning from “Big Data” 

 Big size ( and/or )

 Challenges

 Incomplete

 Noise and outliers

 Fast streaming
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 Opportunities in key tasks 
 Dimensionality reduction
 Online and robust

regression, classification  
and clustering

 Denoising and imputation
Internet
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Roadmap

 Closing comments

 Large-scale data and graph clustering

 Large-scale linear regressions

 Context and motivation

 Random projections for data sketching 

 Adaptive censoring of uninformative data  

 Leveraging sparsity and low rank for anomalies and tensors
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Random projections for data sketching

 SVD incurs complexity                 Q: What if                ?  

M. W. Mahoney, Randomized Algorithms for Matrices and Data, Foundations and Trends
In Machine Learning, vol. 3, no. 2, pp. 123-224, Nov. 2011.

If

Ordinary least-squares (LS) Given

 For                                                                          complexity reduces to                           

 LS estimate via (pre-conditioning) random projection matrix Rd x D
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Performance of randomized LS

 Uniform sampling versus 
Hadamard preconditioning 

 D = 10,000 and p =50
 Performance depends on 

X and y 

D. P. Woodruff, ''Sketching as a Tool for Numerical Linear Algebra,''
Foundations and Trends in Theoretical Computer Science, vol. 10, pp. 1-157, 2014.

condition number of     ; and 

For any            , if                                     , then w.h.p.Theorem.

 Based on the Johnson-Lindenstrauss lemma [JL’84] 
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Online censoring for large-scale regressions

D. K. Berberidis, G. Wang, G. B. Giannakis, and V. Kekatos, "Adaptive Estimation from Big Data via Censored  
Stochastic Approximation," Proc. of Asilomar Conf., Pacific Grove, CA, Nov. 2014.

 Key idea: Sequentially test and update LS estimates only for informative data

 Adaptive censoring (AC) rule: 
Censor if

 Criterion   

 Threshold controls avg. data reduction:   



Censoring algorithms and performance

Proposition 1  AC-RLS

AC-LMS

 AC recursive least-squares (RLS) at complexity  

 AC least mean-squares (LMS)   

D. K. Berberidis, V. Kekatos, and G. B. Giannakis, "Online Censoring for Large-Scale Regressions with 
Application to Streaming Big Data," IEEE Trans. on Signal Processing, vol. 64, pp. 3854-3867, Aug. 2016.
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Censoring vis-a-vis random projections

 RPs for linear regressions [Mahoney ‘11], [Woodruff’14]

 AC for linear regressions

 Data-agnostic reduction; preconditioning costs  

 Data-driven measurement selection
 Suitable also for streaming data
 Minimal memory requirements

 AC interpretations
 Reveals ‘causal’ support vectors
 Censors data with low LLRs: 
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Highly  non-uniform data

 AC-RLS outperforms alternatives at comparable complexity 

 Robust to uniform (all “important”) rows of  X ; 

Performance comparison
 Synthetic: D=10,000, p=300  (50 MC runs); Real data:           estimated from full set  

Q: Time-varying parameters?
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Roadmap

 Closing comments

 Large-scale linear regressions

 Context and motivation

 Large-scale data and graph clustering

 Random sketching and validation (SkeVa)    

 SkeVa-based spectral and subspace clustering   

 Leveraging sparsity and low rank for anomalies and tensors
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Big data clustering 
 Clustering: Given                  , or their distances, assign them to K clusters     

A1. Random Projections: Use dxD matrix R to form RX; apply K-means in d-space     

 K-means: locally optimal, but simple; complexity O(NDKI)

Centroids

Assignments

 Hard clustering: NP-hard!  Soft clustering:

 Probabilistic clustering amounts to pdf estimation
 Gaussian mixtures (EM-based estimation)
 Regularizer can account for unknown K

Q. What if and/or              ?

C. Boutsidis, A. Zousias, P. Drineas, and M. W. Mahoney, “Randomized dimensionality reduction for K-means 
clustering,” IEEE Trans. on Information Theory, vol. 61, pp. 1045-1062, Feb. 2015.
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Random sketching and validation (SkeVa)
 Randomly select               “informative” dimensions  

 Algorithm 

 Sketch dimensions: 

 Similar approaches possible for

For

 Run k-means on 

 Re-sketch                      dimensions  

 Validate using consensus set  



 Augment centroids                                                     , 

 Sequential and kernel variants available

P. A. Traganitis, K. Slavakis, and G. B. Giannakis, "Sketch and Validate for Big Data Clustering,"
IEEE Journal on Special Topics in Signal Processing, vol. 9, pp. 678-690, June 2015.



Divergence-based SkeVa
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 Idea: “Informative” draws yield reliable estimates of multimodal data pdf!

Compare pdf estimates                                                        via “distances”

• Integrated square-error (ISE)

 For

 Sketch      points  

 If                                       , then re-sketch     points    

 Cluster                                     ; associate                     to   

 If 
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RP versus SkeVa comparisons

KDDb dataset (subset)
D = 2,990,384, N = 10,000, K = 2

versus SkeVa
RP: [Boutsidis etal ‘15] 
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Performance and SkeVa generalizations 
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 Di-SkeVa is fully parallelizable  

A. For independent draws,        can be lower bounded

Proposition 2. For a given probability of a successful Di-SkeVa draw r quantified 
by pdf dist. ∆, the number of draws is lower bounded w.h.p. q by

Q. How many samples/draws SkeVa needs?

 Bound can be estimated online  

 SkeVa module can be used for spectral clustering and subspace clustering 



Communities in “big” social nets
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 Community structure prevalent in “big” networks [Fortunato’10], [Girvan-Newman’02]

 Strong intra-cluster connections; weak links elsewhere

Extensively studied problem with many classical tools

 Graph partitioning [Kernighan et al’70], [Shi et al’00]

 Modularity maximization [Newman’06]

 “Workhorse” approach:  Spectral Clustering [Von Luxburg’07]

 Given weighted adjacency matrix       , want K communities

Compute graph Laplacian Spectral decomposition K-means on rows of
K trailing eigenvectors



Spectral clustering as kernel K-means
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 Proper kernel choice

 Kernel K-means               spectral clustering

 Both rely on similarities useful for graph clustering, but do they scale well?  

 Kernel K-means [Dhillon et al’04]

 Map data                           to higher-dimensional                space     

“kernel trick”

 Assignment matrix: 



Kernel sketch and validate (K-SkeVa)
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Fully parallelizable! 

 Randomly select                   “informative” vertices  

 Algorithm: For

 Sketch                  vertices: 

 Run k-means on 

 Re-sketch                          vertices   

 Re-compute clusters w/ newly sampled vertices 

 Validate using consensus set  

P. A. Traganitis, K. Slavakis, and G. B. Giannakis, ”Spectral clustering of large-scale communities via random sketching
and validation,” Proc. of Conf. on Information. Sciences and Systems, Baltimore, MD, Mar. 2015



Identification of network communities
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P. A. Traganitis, K. Slavakis, and G. B. Giannakis, “Spectral clustering of large-scale communities via random 
sketching and validation,” Proc. Conf. on Info. Science and Systems, Baltimore, Maryland, March 18-20, 2015.

 Kernel K-means instrumental for partitioning of large graphs (spectral clustering)
 Relies on graph Laplacian to capture nodal correlations

 For           , kernel-based SkeVa reduces complexity to  

arXiv collaboration network (General Relativity): N=4,158 nodes, 13,422 edges, K = 36 [Leskovec’11]

Spectral Clustering
3.1 sec

SkeVa (n = 500)
0.5 sec

SkeVa (n=1,000)
0.85 sec
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Roadmap

 Closing comments

 Large-scale linear regressions

 Context and motivation

 Large-scale data and graph clustering

 Anomaly identification    

 Tensor subspace tracking    

 Leveraging sparsity and low rank 
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Anomalies in social graphs
 To identify e.g.,  “strange” users and “atypical” behavior

 Challenge: Too many users, BUT few features per user

 Approach: Adopt “egonet” features, and leverage structure; e.g., sparsity and low rank

 Examples

 E-mail spammers

 Cybercriminals

 Terrorist cells

Can early detection of anomalies 
halt future terrorist attacks?

B. Baingana, P. Traganitis, G. Mateos, and G. B. Giannakis, ”Big data analytics for social networks,”
Graph Analysis for Social Media, I. Pitas, Editor, CRC Press, 2015. 

 Egonet features

 Degree, number of edges, 
centrality, betweeness, … 
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Low-rank plus sparse model

 Egonets can unveil anomalous behavior [Akoglu et al’10]

 Account for “misses” via sampling operator 

 N-node graph with egonet features  

 collects D features for egonet n

 Nominal features related via “power law” while anomalies are sparse

Low-rank nominal features Sparse outlier matrix

Egonet
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Robust low-rank component pursuit

 Numerical test: Anomalies in ArXiv collaboration network (General Relativity co-authors)

 D = 9, N = 5,242 nodes

 Observed Jan. ‘93 – Apr.’03

 Low-rank- plus sparsity-promoting estimator

 and 

M. Mardani, G. Mateos, and G. B. Giannakis, ``Recovery of low rank plus compressed sparse matrices with
application to unveiling traffic anomalies,'’ IEEE Trans. Info. Theory, vol. 59, no. 8, pp. 5186-5205, Aug. 2013.
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M. Mardani, G. Mateos, and G. B. Giannakis, “Recovery of low-rank plus compressed sparse matrices with application
to unveiling traffic anomalies," IEEE Transactions on Information Theory, pp. 5186-5205, Aug. 2013.

 Graph G (N, L) with N nodes, L links, and F  flows (F >> L); OD flow zf,t

є {0,1}

Anomaly

 Packet counts per link l and time slot t

 Matrix model across T time slots:
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 Anomalies: changes in origin-destination (OD) flows [Lakhina et al’04]

 Failures, congestions, DoS attacks, intrusions, flooding

Modeling Internet traffic anomalies
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 Z (and X:=RZ)  low rank, e.g., [Zhang et al‘05]; A is sparse across time and flows 

Data: http://math.bu.edu/people/kolaczyk/datasets.html

0 200 400 600 800 1000
0

2

4
x 108

Time index(t)

|a
f,

t|

Low-rank plus sparse matrices
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 Real network data, Dec. 8-28, 2003

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

False alarm probability

D
et

ec
tio

n 
pr

ob
ab

ili
ty

 

 

[Lakhina04], rank=1
[Lakhina04], rank=2
[Lakhina04], rank=3
Proposed method
[Zhang05], rank=1
[Zhang05], rank=2
[Zhang05], rank=3

Data: http://www.cs.bu.edu/~crovella/links.html
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 Improved performance by leveraging sparsity and low rank
 Succinct depiction of the network health state across flows and time

Internet2 data
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From low-rank matrices to tensors

B=

br

βi

A=

ar

αi

 PARAFAC decomposition per slab t [Harshman ’70]

C=

cr

γi

 Tensor subspace comprises R rank-one matrices

 Data cube                            , e.g., sub-sampled MRI frames

Goal: Given streaming                                        , learn the subspace   
matrices (A,B) recursively, and impute possible misses of Yt

J. A. Bazerque, G. Mateos, and G. B. Giannakis, "Rank regularization and Bayesian inference for tensor completion       
and extrapolation," IEEE Trans. on Signal Processing, vol. 61, no. 22, pp. 5689-5703, Nov. 2013.



28

Online tensor subspace learning

 Real-time reconstruction (FFT per iteration)

 Stochastic alternating minimization; parallelizable across bases

 Image domain low tensor rank 

M. Mardani, G. Mateos, and G. B. Giannakis, "Subspace learning and imputation for streaming big data
matrices and tensors," IEEE Trans. on Signal Processing, vol. 63, pp. 2663 - 2677, May 2015.
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Dynamic cardiac MRI test
 in vivo dataset: 256 k-space 200x256 frames

R=100, 90% misses R=150, 75% misses

Ground-truth frame

Sampling trajectory

 Low-rank                   plus                      can also capture motion effects  

 Potential for accelerating MRI at high spatio-temporal resolution  

M. Mardani and G. B. Giannakis, "Accelerating dynamic MRI via tensor subspace learning,“ 
Proc. of ISMRM 23rd Annual Meeting and Exhibition, Toronto, Canada, May 30 - June 5, 2015.
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Closing comments

 Other key Big Data tasks

 Regression and tracking dynamic data 

 Large-scale learning  

 Enabling tools for Big Data 

 Scalable computing platforms

K. Slavakis, G. B. Giannakis, and G. Mateos, “Modeling and optimization for Big Data analytics,” 
IEEE Signal Processing Magazine, vol. 31, no. 5, pp. 18-31, Sep. 2014. 

 Nonlinear non-parametric function approximation 
 Clustering massive, high-dimensional data and graphs 

 Visualization, mining, privacy, and security 

 Acquisition, processing, and storage 

 Fundamental theory, performance analysis
decentralized, robust, and parallel  algorithms 

 Big Data application domains … 
 Sustainable Systems, Social, Health, and Bio-Systems, Life-enriching 

Multimedia, Secure Cyberspace, Business, and Marketing Systems … Thank You!
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