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DEEP LEARNING IMPACT

SIFT + FVs [7]
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Today we get 3.5% by 152 layers

DL: Impact

Speech Recognition

According to Microsoft's

* Imagenet dataset
* 1,400,000 images

* 1000 categories

e 150000 for testing,
* 50000 for validation
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DEEP NEURAL NETWORKS (DNN)

* One layer of a neural net

VX
V € R4 X Y Y(VX) e R™
X is a linear F is a non-linear
operation function

* Concatenation of the layers creates the whole net
o(x1, X2, .., X5 =y(vxHx?) .. xX)

VeRd - Xt @ Xt Y XK Y



CONVOLUTIONAL NEURAL NETWORKS (CNN)

VX
VeR X (1) Y(VX) € R™
X is a linear F is a non-linear
operation function

* In many cases, X is selected to be a convolution.
* This operator is shift invariant.

* CNN are commonly used with images as they are
typically shift invariant.



THE NON-LINEAR PART

* Usuallyyp = g o f. X Y
* f is the (point-wise) activation function
RelLU Sigmoid . Hyperbolic
f(x) = max(x,0) (x) = I tangent
fe0 = 1+e* f(x) = tanh(x)

* g is a pooling or an aggregation operator.

Vi W e Ve

Max pooling Mean pooling lp pooling
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What is the role
of pooling?




SAMPLE OF RELATED EXISTING THEORY

Universal approximation for any measurable Borel functions

Depth of a network provides an exponential complexity compared to the number
parameters , invariance to more complex deformations
and better modeling of correlations of the input

Number of training samples scales as the number of parameters
or the norm of the weights in the DNN

Pooling stage provides shift invariance
Relation of pooling and phase retrieval

Deeper networks have more local minima that are close to the global one and
less saddle points

Relation to dictionary learning

DNN with Random Gaussian weights are good for classifying the average points in the
data and an important goal of training is to classify the boundary points between the
different classes in the data.
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NETWORK STRUCTURE
x1 v xt xK o

softmax/
Two : . .
€ Y general non-linearity linear w

Classes (ReLU, pooling,...) classifier

Input Space Feature Space




GENERALIZATION ERROR (GE)

* In training, we reduce the classification error
Ctraining Of the training data as the number of

training examples L increases.

* However, we are interested to reduce the error
Y5t Of the (unknown) testing data as L increases.

* The difference between the two is the
generalization error

GE = ftraining — Lrest
= |t is important to understand the GE of DNN
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REGULARIZATION TECHNIQUES

Weight decay — penalizing DNN weights [Krogh & Hertz, 1992].

Dropout - randomly drop units (along with their connections)
from the neural network during training [Hinton et al., 2012],
[Baldi & Sadowski, 2013], Srivastava et al., 2014].

DropConnect — dropout extension [\Wan et al., 2013]
Batch normalization [loffe & Szegedy, 2015].

Stochastic gradient descent (SGD) [Hardt, Recht & Singer,
2016].

Path-SGD [Neyshabur et al., 2015].

And more [Rifai et al., 2011], [Salimans & Kingma, 2016], [Sun et
al, 2016].
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A SAMPLE OF GE BOUNDS

e Using the VC dimension it can be shown that

log(L)

GE < 0| |DNN params -

* The GE was bounded also by the DNN weights

GE < —zKuwuz ﬂuwuzz

L is the
number of
training
samples
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A SAMPLE OF GE BOUNDS

e Using the VC dimension it can be shown that

log(L)

GE<O
B L

* The GE was bounded also by the DNN weights
| .
GE<— " lwll, | [IIx’
7 e [,

* Note that in both cases the GE grows with the depth
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RETHINKING GENERALIZATION

* Networks with the same architecture may generalize
well with structured data but overfit if the data is
given with random labels

* This phenomena is affected by explicit regularization.

* This shows that taking into account only the network
structure for bouding the generalization error is
misleading

* We need to seek an alternative to the Rademacher
Complexity and VC-dimension based bounds
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DNN INPUT MARGIN

* Theorem 6: If for every input margin yin(Vi) >y
then GE < \/NY/Z(Y)/\/Z

* Ny /o (Y) is the covering number of the data Y.

* Ny /2 (Y) gets smaller as y gets larger.

* Bound is independent of depth.j@

* Our theory relies on the
robustness framework




INPUT MARGIN BOUND

* Maximizing the input margin directly is hard

* Our strategy: relate the input margin to the output
margin yout(V‘) and other DNN properties

* Class 1

e Theorem 7: Y o,

Yin(V?) = — o)

Sup ||V||2] (V)H

Yout(V )
~ Th<i<klXtl,
> Vout(Vi).

My<i<kll X 2




OUTPUT MARGIN

* Theorem 7: yin(Vi) >

2 - 2 : * Class 1
H1si5K”Xl”2 H1si5K”Xl”F B Class 2

* Qutput margin is easier to
maximize — SVM problem

* Maximized by many cost
functions, e.g., hinge loss.




GE AND WEIGHT DECAY

Vout(V ) > yout(Vi)
](V)H — <<kl XY,

* Theorem 7: yin(Vi) =
sup
Vey

V2

> Vout(Vi)

* Class 1
* Class 2

* Bounding the weights
increases the input margin

* Weight decay regularization
decreases the GE

* Related to regularization used
by




JACOBIAN BASED REGULARIZATION

Vout(Vi) > Vout(Vi)

v — <<l X?
A

* Theorem 7: yin(Vi) =

sup
VeY

> Vout(Vi)_
My <i<rll Xl -

* J(V) is the Jacobian of the
DNN at point I/.

- ](-) IS piecewise constant.

e Using the Jacobian of the
DNN leads to a better bound.

= New regularization technique.




RESULTS

e Better performance with less training samples

256 samples 512 samples 1024 samples
: loss #layers noreg. WD LM noreg. WD IM noreg. WD LM
vl e —/ Y T
hinge y 88.37 89.88 93.83 9399 9462 9549 9579 96.57 97.45
Dataset [Eueiwe | 8722 8931 9322 9341 9397 9576 9546 9645 97.60

CCE 88.45 8845 9277 9229 93.14 9525 9538 9579 96.89

CCE 3 89.05 89.05 93.10 91.81 93.02 9532 9511 9586 97.14

CCE: the categorical cross entropy.
* WD: weight decay regularization.
* LM: Jacobian based regularization for large margin.

* Note that hinge loss generalizes better than CCE and
that LM is better than WD as predicted by our theory.
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INVARIANCE

* Our theory extends also to study of the relation
between invariance in the data and invariance in
the network

* We have proposed also a new strategy to enforce
invariance in the network
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DNN may
solve

optimization
problems

23



INVERSE PROBLEMS

* WearegivenV =Z7ZA + E

Pl N e

Given set of Unknown -
measurements signal

e Standard technique for recovery
mZinIIV—ZAIIZ s.t Ze€Y

N\

. UnconStrainEd fOrm Z resides in a low
mzln”V — ZA”% 4 Af(Z) dimensional set Y

N\

Regularization f is a penalty
parameter function
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£1 MINIMIZATION CASE

 Unconstrained form
mZinIIV — ZA||5 + Al|Z]|4

* Can be solved by iterative shrinkage and
thresholding technique (ISTA)

Zt+1 Ilj)l[,l(zt i H(V _ ZtA)AT)

Soft . U is the
thresholdmg_l step size

operation



ISTA CONVERGENCE

* Reconstruction mean squared error (MSE) as a
function of the number of iterations
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LISTA

* ISTA
Z'" =y, (2 + p(v — 2tA)AT)

* Rewriting ISTA:
Z1 =y, ,(Z +uva’)

e Learned ISTA (LISTA):
7" =, (ZtX +VS)

Learned
operators



LISTA CONVERGENCE

* Replacing I — pAA" and uA" in ISTA with the learned
X and S improves convergence

e Extensions to other models
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LISTA AS A NEURAL NETWORK

Linear
operators S
VeRd X + 1) Z
V=ZA+EF |
|- \noise Y is a non- An estimate
operator linear of /

operation

&




£o-MINIMIZATION

Iterative hard is the
thresholding I — pAA" .

step size
algorithm (IHT)

VeR? uA’ + Y Z
A k-sparse
Y is the hard estimate of Z.
thresholding Aim at solving
operation: keeps mjn‘ V —7A ‘
vecotr the largest 2 ,
k entries Sal Z‘o = K

30
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£1-MINIMIZATION

Projected
gradient descent I — uAAT U is th.e
algorithm for €4 step size
minimization
VeR uA’ + Y 7
V=2A4FL Y projects onto Estimate of ~.
the £, ball Aim at solving
& mjn‘ V — ZAH
r R z '
S.t ‘ZH <R
|




UNCONSTRAINED £1-MINIMIZATION

Iterative soft

. . T U is the
thresholding I'—pAa step size
algorithm (ISTA)
VeR:—s pAT & ¥ Z
Soft
Step size 4 obeys thresholding
% > || Al operation
A A7 Minimizer of

min|lv ~ 24| + 4)1Z]



ISTA CONVERGENCE

* Reconstruction mean squared error (MSE) as a
function of the number of iterations

33



LEARNED ISTA (LISTA)

Learned
linear S
operators
V e R X + Y Z
- NYolj
V B ZA + E thresholding An estimate
operation of 7
-2 |

PN




LISTA CONVERGENCE

* Replacing I — pAA" and uA" in ISTA with the learned
X and S improves convergence

e Extensions to other models
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PROJECTED GRADIENT DESCENT (PGD)

I—uAAT K is the

step size
V e R4 77 L Y Z

V=ZA+E Y projects onto Estimate of Z.
the set ¥’ Aim at solving

mzinHV — ZA||
s.t. f(Z) <R

f(Z) =R




THEORY FOR PGD

* Theorem 8: Let Z € R%, f: R* — R a proper
function, f(Z) < R, C¢(Z) the tangent cone of f

at point x, A € ]Rdxm a random Gaussian matrix
and V = ZAA+ E. Then the estimate of PGD at
iteration t, Z¢, obeys

12¢ = z|| < (r0) 121l

where p = sup U(I — pAAT)WT
UWEeCr(Z)nBE
and k¢ = 11if f is convex and k; = 2 otherwise.



PGD CONVERGENCE RATE

= sup U(I — pAAT)WT is the
UWeCF(Z)nBY
convergence rate of PGD.

Let w be the Gaussian mean width of Cf(Z) N B4,

fyu=———=~=>thenp = 1—0(““”).
(M{.ﬁ) d m+d
1 w
If u = Ethenp =N, (\/—m)
For the k-sparse model w? = O(klog(d))
For GMM with k Gaussians w? = 0(k).

How may we cause w to become smaller for having a
oetter convergence rate?
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INACCURATE PROJECTION

* PGD iterations projectsonto Y = {Z:f(Z) < R}.
* Smaller Y = Smaller w.
—Faster convergence as

m-—-w w
T o )

* Let us assume that our signal belongs to a smaller set
Y ={Z:f(Z) < R} with® K w.

* |deally, we would like to project
onto Y instead of Y.

* This will lead to faster convergence.

 What if such a projection is not feasible?

Y

P

Y
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INACCURATE PROJECTION

 We will estimate the projection onto Y by
* Alinear projection P
* Followed by a projection onto Y

* Assumptions:
* lleoy(ZP)-Z]| < €

Projection of the target vector Z
onto P and thenonto Y
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INACCURATE PGD (IPGD)

(I—ﬂAAT)P U is the

step size

V e R —uA"™P— % () Z

V=ZA+E

Y projects onto Estimate of Z.
the set Y Aim at solving

mzinHV — ZA||
s.t. f(Z) <R

Y




THEORY FOR IPGD

* Theorem 9: Let Z € R%, f: R? — R a proper convex*
function, f(Z) <R, (f'f(Z) the tangent cone of [ at
point Z, A € R¥*™ 3 random Gaussian matrix and V
= /A + E. Then the estimate of IPGD at iteration ¢,
7t obeys

5 1- ‘
2t — 7|| < (<pp>t | 1_(p 2 é’) 1ZIl,
Pp

where p,, = sup UP(I — uAAT)PWT
UWEC(Z)nB4
and € = (2 + pple.

*We have a version of this theorem also when f is non-proper or non-convex function  *



CONVERGENCE RATE COMPARISON

* PGD convergence:

(p)°
* |IPGD convergence:
1— (pp)t
(pp)* (2 + pp)e
1—pp

(c)
(pp)t+€ — (pp)t < (p)*
(a)
(b)

(c) Faster convergence as pp < p (because w, < w).



MODEL BASED COMPRESSED SENSING

* Y is the set of sparse vectors with sparsity patterns
that obey a tree structure.

* Projecting onto Y Improves convergence !
rate compared to projecting onto the set
of sparse vectors Y . 05 0.5

* The projection onto Y is more
demanding than onto Y. 025 025 025 0.25

* Note that the probability of selecting atoms from
lower tree levels is smaller than upper ones.

P will be a projection onto certain tree levels — zeroing
the values at lower levels.
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MODEL BASED COMPRESSED SENSING

m—— PED K
— GO ree

m—— |PED 1 tree level
p' - ====|PGD 2 tree lavels
Tom= = PGED 3 tree levels
== = |PGD 4 tree lovels
== =IPGD changing leveals |

10

1 :5 20 25 ¥ 35
t (Iteration Number)

3o

Non-zeros picked
entries has zero mean
random Gaussian
distribution with
variance:

- 1 at first two levels

- 0.52 at the third level
- 0.22 at the rest of
the levels
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SPECTRAL COMPRESSED SENSING

* Y is the set of vectors with sparse representation
in a 2-times redundant DCT dictionary such that:

* We set P to be a pooling-like operation that keeps
in each window of size 3 only the largest value.
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SPECTRAL COMPRESSED SENSING

I E;Z'III EI:-.:II:' Zald SIII::ID :15.IIIIZ' 4III;1'EI 4E-:ZII1' EJ:I.II.“-:I
t (Iteration Number)




SPECTRAL COMPRESSED SENSING

* Y is the set of vectors with sparse representation
in a 4-times redundant DCT dictionary such that:

£ pre Saanyl e b

* We set P to be a pooling-like operation that keeps
in each window of size 5 only the largest value.
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SPECTRAL COMPRESSED SENSING

s PGD
== |PGD

y
~____

150 200 250 300
t (Iteration Number)




LEARNING THE PROJECTION

* If we have no explicit information about Y it might
oe desirable to learn the projection.

* Instead of learning P, it is possible to replace
(1 — ,uAAT)P and uA" P with two learned matrices
S and X respectively.

* This leads to a very similar scheme to the one of
LISTA and provides a theoretical foundation for the
success of LISTA.



Learned
linear
operators

V € R

V=ZA+E
Y

LEARNED IPGD

S

+ Y

Y projects onto
the set YV

Z

Estimate of Z.
Aim at solving

mzinHV — ZA||
s.t. f(Z) <R



LISTA

Learned
linear S
operators
VeR? X + ), Z
Y is a proximal .
Y _
YU) = mmHV ZA|
argmlnHU ZH
ZeRd +Af(2)

+Af(Z)



LISTA MIXTURE MODEL

e Approximation of the projection onto ¥;
with one linear projection may not
be accurate enough.

 This requires more LISTA layers/iterations.

* Instead, one may use several LISTA networks,
where each approximates a different part of X

* Training multiple LISTA networks
accelerate the convergence further. ~‘

alad
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LISTA MIXTURE MODEL

10"

—ISTA
——LISTA |
- = LISTA-MM | _

E3
<
|
Al
g
|
>
|
o
N
<
_|_
Al
2&3
|
>

30 40 50 60 70 80 90
t (iteration number)




RELATED WORKS

* In it is shown that a learning
may give a gain due to better preconditioning of A.

° In a relation to the restricted
isometry property (RIP) is drawn

* In a connection is
drawn to approximate message passing (AMP).

* All these works consider only the sparsity case
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Generalization
error depends
on the DNN
input margin

——— e —
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QUESTIONS?

WEB.ENG.TAU.AC.IL/~RAJA



GAUSSIAN MEAN WIDTH

e Gaussian mean width:

w(¥)=Esup(V-W,g), g~N(0I).
VWEY

g
w

The width of
the set Y in
the direction 2

of g:

Ve



MEASURE FOR LOW DIMENSIONALITY

e Gaussian mean width:

w)=Esup(V-W,g), g~N(0I).
V.WeY

e w%(Y) is a measure for the dimensionality of the
data.

* Examples:




