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DEEP LEARNING IMPACT

• Imagenet dataset

• 1,400,000 images

• 1000 categories

• 150000 for testing, 

• 50000 for validation
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Today we get 3.5% by 152 layers



DEEP NEURAL NETWORKS (DNN)

• One layer of a neural net

• Concatenation of the layers creates the whole net

Φ(𝑋1, 𝑋2, … , 𝑋𝐾) = 𝜓 𝜓 𝜓 𝑉𝑋1 𝑋2 … 𝑋𝐾

𝑉 ∈ ℝ𝑑 𝑋 𝜓 𝜓(𝑉𝑋) ∈ ℝ𝑚

𝑋 is a linear 
operation

𝐹 is a non-linear 
function

𝑉𝑋

𝑉 ∈ ℝ𝑑 𝑋1 𝜓 𝑋𝑖 𝜓 𝑋𝐾 𝜓

3



CONVOLUTIONAL NEURAL NETWORKS (CNN)

• In many cases, 𝑋 is selected to be a convolution.

• This operator is shift invariant.

• CNN are commonly used with images as they are 
typically shift invariant. 

𝑽 ∈ ℝ𝒅 𝑿 𝝍 𝝍(𝑽𝑿) ∈ ℝ𝒎

𝑋 is a linear 
operation

𝐹 is a non-linear 
function

𝑉𝑋
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THE NON-LINEAR PART

• Usually 𝜓 = 𝑔 ∘ 𝑓.

• 𝑓 is the (point-wise) activation function

• 𝑔 is a pooling or an aggregation operator. 

ReLU 
𝑓(x) = max(x, 0)

Sigmoid 

𝑓 𝑥 =
1

1 + 𝑒−𝑥

Hyperbolic 
tangent 

𝑓 𝑥 = tanh(𝑥)

𝑉1 𝑉2 𝑉𝑟𝑉3 𝑉4 … … … …

max
𝑖

𝑉𝑖

Max pooling Mean pooling

1

𝑛
 

𝑖=1

𝑛

𝑉𝑖

𝑙𝑝 pooling
𝑝

 
𝑖=1

𝑛

𝑉𝑖
𝑝

𝑋 𝜓
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WHY DNN WORK?

What is so 
special with the 
DNN structure? What is the role of 

the depth of DNN?

What is the role 
of pooling?

What is the role of 
the activation 

function?

How many 
training samples 

do we need?

What is the 
capability of DNN?

What happens to the 
data throughout the 

layers?
6



SAMPLE OF RELATED EXISTING THEORY

• Universal approximation for any measurable Borel functions [Hornik et. al., 1989, 
Cybenko 1989]

• Depth of a network provides an exponential complexity compared to the number
parameters [Montúfar et al. 2014], invariance to more complex deformations [Bruna &
Mallat, 2013] and better modeling of correlations of the input [Cohen et al. 2016]

• Number of training samples scales as the number of parameters [Shalev-Shwartz & Ben-

David 2014] or the norm of the weights in the DNN [Neyshabur et al. 2015]

• Pooling stage provides shift invariance [Bruna et al. 2013]

• Relation of pooling and phase retrieval [Bruna et al. 2014]

• Deeper networks have more local minima that are close to the global one and 
less saddle points [Saxe et al. 2014], [Dauphin et al. 2014], [Choromanska et al. 2015], [Haeffele & 
Vidal, 2015]

• Relation to dictionary learning [Papayan et al. 2016].

• DNN with Random Gaussian weights are good for classifying the average points in the
data and an important goal of training is to classify the boundary points between the
different classes in the data. [Giryes et al. 2016]



OUTLINE

Generalization 
error depends 

on the DNN 
input margin

DNN may 
solve 

optimization 
problems
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Generalization 
error depends 

on the DNN 
input margin

DNN may 
solve 

optimization 
problems

Generalization 
Error
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softmax/ 
linear 

classifier

NETWORK STRUCTURE

𝑿𝟏 𝝍 𝑿𝒊 𝝍 𝑿𝑲 𝝍

general non-linearity 
(ReLU, pooling,…) 

𝐓𝐰𝐨

𝐂𝐥𝐚𝐬𝐬𝐞𝐬 𝒘

𝒘𝑻𝜱 𝑿𝟏, 𝑿𝟐, … , 𝑿𝑲 = 𝟎

∈ 𝜰

Input Space Feature Space
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GENERALIZATION ERROR (GE)

• In training, we reduce the classification error 
ℓtraining of the training data as the number of 

training examples 𝐿 increases.

• However, we are interested to reduce the error 
ℓtest of the (unknown) testing data as 𝐿 increases.

• The difference between the two is the 
generalization error

GE = ℓtraining − ℓtest

• It is important to understand the GE of DNN
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REGULARIZATION TECHNIQUES

• Weight decay – penalizing DNN weights [Krogh & Hertz, 1992]. 

• Dropout - randomly drop units (along with their connections) 
from the neural network during training [Hinton et al., 2012], 
[Baldi & Sadowski, 2013], Srivastava et al., 2014].

• DropConnect – dropout extension [Wan et al., 2013]

• Batch normalization [Ioffe & Szegedy, 2015].

• Stochastic gradient descent (SGD) [Hardt, Recht & Singer, 
2016].

• Path-SGD [Neyshabur et al., 2015].

• And more [Rifai et al., 2011], [Salimans & Kingma, 2016], [Sun et 
al, 2016].
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A SAMPLE OF GE BOUNDS

• Using the VC dimension it can be shown that

GE ≤ 𝑂 DNN params ∙
log 𝐿

𝐿

[Shalev-Shwartz and Ben-David, 2014].

• The GE was bounded also by the DNN weights

GE ≤
1

𝐿
2𝐾 𝑤 2  

𝑖

𝑋𝑖
2,2

[Neyshabur et al., 2015].

•

13

L is the 
number of 

training 
samples



A SAMPLE OF GE BOUNDS

• Using the VC dimension it can be shown that

GE ≤ 𝑂 DNN params ∙
log 𝐿

𝐿

[Shalev-Shwartz and Ben-David, 2014].

• The GE was bounded also by the DNN weights

GE ≤
1

𝐿
2𝐾−1 𝑤 2  

𝑖

𝑋𝑖
𝐹

[Neyshabur et al., 2015].

• Note that in both cases the GE grows with the depth
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RETHINKING GENERALIZATION

• Networks with the same architecture may generalize 
well with structured data but overfit if the data is 
given with random labels [Zhang et al., 2017].

• This phenomena is affected by explicit regularization.

• This shows that taking into account only the network 
structure for bouding the generalization error is 
misleading

• We need to seek an alternative to the Rademacher
Complexity and VC-dimension based bounds
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DNN INPUT MARGIN

• Theorem 6: If for every input margin 𝛾𝑖𝑛 𝑉𝑖 > 𝛾

then 𝐺𝐸 ≤  𝑁𝛾/2(Υ) 𝐿

• 𝑁𝛾/2(Υ) is the covering number of the data Υ.

• 𝑁𝛾/2(Υ) gets smaller as 𝛾 gets larger.

• Bound is independent of depth.

• Our theory relies on the 
robustness framework 
[Xu & Mannor, 2012].

𝑉𝑖

𝑉𝑖

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2017]
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INPUT MARGIN BOUND

• Maximizing the input margin directly is hard

• Our strategy: relate the input margin to the output 
margin 𝛾𝑜𝑢𝑡 𝑉𝑖 and other DNN properties

• Theorem 7:

𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

𝑉𝑖

Φ(𝑉𝑖)

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2017] 17



OUTPUT MARGIN

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

• Output margin is easier to
maximize – SVM problem

• Maximized by many cost 
functions, e.g., hinge loss.

𝑉𝑖

Φ(𝑉𝑖)
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GE AND WEIGHT DECAY

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

• Bounding the weights 
increases the input margin

• Weight decay regularization
decreases the GE

• Related to regularization used 
by [Haeffele & Vidal, 2015]

𝑉𝑖

Φ(𝑉𝑖)
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JACOBIAN BASED REGULARIZATION

• Theorem 7:    𝛾𝑖𝑛 𝑉𝑖 ≥
𝛾𝑜𝑢𝑡 𝑉𝑖

sup
𝑉∈Υ

𝑉

𝑉 2
𝐽 𝑉

2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
2

≥
𝛾𝑜𝑢𝑡 𝑉𝑖

 1≤𝑖≤𝐾 𝑋𝑖
𝐹

• 𝐽 𝑉 is the Jacobian of the 
DNN at point 𝑉.

• 𝐽 ∙ is piecewise constant.

• Using the Jacobian of the
DNN leads to a better bound.

• New regularization technique.
20



RESULTS

• Better performance with less training samples

• CCE: the categorical cross entropy.

• WD: weight decay regularization.

• LM: Jacobian based regularization for large margin.

• Note that hinge loss generalizes better than CCE and 
that LM is better than WD as predicted by our theory.

MNIST 
Dataset

[Sokolic, Giryes, Sapiro, 
Rodrigues, 2017]
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INVARIANCE

• Our theory extends also to study of the relation 
between invariance in the data and invariance in 
the network

• We have proposed also a new strategy to enforce 
invariance in the network [Sokolic, Giryes, Sapiro, 
Rodrigues, 2017]

22



Generalization 
error depends 

on the DNN 
input margin

DNN may 
solve 

optimization 
problems

Minimization 
by DNN
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INVERSE PROBLEMS

• We are given 𝑽 = 𝒁𝑨 + 𝑬

• Standard technique for recovery
𝐦𝐢𝐧

𝒁
𝑽 − 𝒁𝑨 𝟐 𝐬. 𝐭. 𝒁 ∈ 𝜰

• Unconstrained form

𝐦𝐢𝐧
𝒁

𝑽 − 𝒁𝑨 𝟐
𝟐 + 𝝀𝒇(𝒁)

24

linear 
operator

noise 
Given set of 

measurements
Unknown 

signal

𝒁 resides in a low 
dimensional set 𝜰

𝒇 is a penalty 
function

Regularization 
parameter



ℓ𝟏 MINIMIZATION CASE

• Unconstrained form

𝐦𝐢𝐧
𝒁

𝑽 − 𝒁𝑨 𝟐
𝟐 + 𝝀 𝒁 𝟏

• Can be solved by iterative shrinkage and 
thresholding technique (ISTA)

𝒁𝒕+𝟏 = 𝝍𝝀𝝁 𝒁𝒕 + 𝝁 𝑽 − 𝒁𝒕𝑨 𝑨𝑻

25

Soft 
thresholding

operation
- 𝝀𝝁 𝝀𝝁

𝝁 is the 
step size



ISTA CONVERGENCE

• Reconstruction mean squared error (MSE) as a 
function of the number of iterations
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𝑬 𝒁 −  𝒁𝒕

𝒕



𝑳𝑰𝑺𝑻𝑨

• ISTA

𝒁𝒕+𝟏 = 𝝍𝜆𝜇 𝒁𝒕 + 𝜇 𝑽 − 𝒁𝒕𝑨 𝑨𝑻

• Rewriting ISTA:

𝒁𝒕+𝟏 = 𝝍𝜆𝜇 𝒁𝒕 𝑰 − 𝝁𝑨𝑨𝑻 + 𝜇𝑽𝑨𝑻

• Learned ISTA (LISTA): 
𝒁𝒕+𝟏 = 𝝍𝜆 𝒁𝒕𝑿 + 𝑽𝑺

27

Learned 
operators



• Replacing 𝐼 − 𝜇𝐴𝐴𝑇 and 𝜇𝐴𝑇 in ISTA with the learned 
𝑋 and 𝑆 improves convergence [Gregor & LeCun, 2010]

• Extensions to other models [Sprechmann, Bronstein & Sapiro, 2015], 

[Remez, Litani & Bronstein, 2015], [Tompson, Schlachter, Sprechmann & Perlin, 2016].

LISTA CONVERGENCE

100

20

28

𝐸 𝑍 −  𝑍𝑡

𝒕
5020



LISTA AS A NEURAL NETWORK

𝑿 𝝍

𝑺

𝜓 is a non-
linear 

operation
𝒁 ∈ 𝜰

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

 𝒁

An estimate 
of 𝑍

+

Linear 
operators

29

linear 
operator

noise



ℓ0-MINIMIZATION

𝜓 is the hard 
thresholding

operation: keeps 
the largest 
k entries 

𝒁 is a
k−sparse
vecotr

𝑽 ∈ ℝ𝒅

𝑉 = 𝑍𝐴 + 𝐸

Iterative hard 
thresholding 

algorithm (IHT)

𝝁𝑨𝑻 𝝍

𝑰 − 𝝁𝑨𝑨𝑻

 𝒁+

𝜇 is the 
step size

A k-sparse 
estimate of 𝑍.
Aim at solving

min
 𝑍

𝑉 −  𝑍𝐴

𝑠. 𝑡  𝑍
0

≤ k
30

[Blumensath & Davies, 2009]



ℓ1-MINIMIZATION

𝜓 projects onto 
the ℓ1 ball

𝒁 𝟏 ≤ 𝑹

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬 Estimate of 𝑍.
Aim at solving

min
 𝑍

𝑉 −  𝑍𝐴

𝑠. 𝑡  𝑍
1

≤ 𝑅

Projected 
gradient descent 
algorithm for ℓ1

minimization

𝝁𝑨𝑻 𝝍

𝑰 − 𝝁𝑨𝑨𝑻

 𝒁+

𝑹

𝑹

−𝑹

−𝑹

𝜇 is the 
step size

31



UNCONSTRAINED ℓ1-MINIMIZATION

𝝁𝑨𝑻

Soft 
thresholding

operation

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

 𝒁+

Step size 𝜇 obeys
1
𝜇

≥ 𝐴

Iterative soft 
thresholding 

algorithm (ISTA)

- 𝝀𝝁 Minimizer of 

𝒎𝒊𝒏
 𝒁

𝑽 −  𝒁𝑨 + 𝝀  𝒁
𝟏

𝝀𝝁

𝜇 is the 
step size

[Daubechies, Defrise & Mol, 2004], 
[Beck & Teboulle, 2009]

32

𝑰 − 𝝁𝑨𝑨𝑻

𝝍



ISTA CONVERGENCE

• Reconstruction mean squared error (MSE) as a 
function of the number of iterations

33

𝑬 𝒁 −  𝒁𝒕

𝒕



LEARNED ISTA (LISTA)

𝑿 𝝍

𝑺

𝒁 ∈ 𝜰

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

 𝒁

An estimate 
of 𝒁

+

Learned 
linear 

operators

[Gregor & LeCun, 2010]

Soft 
thresholding

operation
- 𝝀 𝝀

34



• Replacing 𝐼 − 𝜇𝐴𝐴𝑇 and 𝜇𝐴𝑇 in ISTA with the learned 
𝑋 and 𝑆 improves convergence [Gregor & LeCun, 2010]

• Extensions to other models [Sprechmann, Bronstein & Sapiro, 2015], 

[Remez, Litani & Bronstein, 2015], [Tompson, Schlachter, Sprechmann & Perlin, 2016].

LISTA CONVERGENCE

100

20

35

𝐸 𝑍 −  𝑍𝑡

𝒕
5020



PROJECTED GRADIENT DESCENT (PGD)

𝝍 projects onto 
the set 𝜰

𝒇( 𝒁) ≤ 𝑹

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

𝝁𝑨𝑻 𝝍  𝒁+

𝒇(𝒁) ≤ 𝑹

𝜇 is the 
step size

Estimate of 𝒁.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑽 −  𝒁𝑨

𝒔. 𝒕. 𝒇( 𝒁) ≤ 𝑹
36

𝑰 − 𝝁𝑨𝑨𝑻



THEORY FOR PGD

• Theorem 8: Let 𝑍 ∈ ℝ𝑑, 𝑓: ℝ𝑑 → ℝ a proper 
function, 𝑓 𝑍 ≤ 𝑅, 𝐶𝑓(𝑍) the tangent cone of 𝑓
at point 𝑥, 𝐴 ∈ ℝ𝑑×𝑚 a random Gaussian matrix 
and 𝑉 = 𝑍𝐴 + 𝐸. Then the estimate of PGD at 
iteration 𝑡,  𝑍𝑡, obeys

 𝑍𝑡 − 𝑍 ≤ 𝜅𝑓𝜌
𝑡

𝑍 ,

where 𝜌 = sup
𝑈,𝑊∈𝐶𝑓 𝑍 ∩ℬ𝑑

𝑈 𝐼 − 𝜇𝐴𝐴𝑇 𝑊𝑇

and  𝜅𝑓 = 1 if 𝑓 is convex and 𝜅𝑓 = 2 otherwise.
[Oymak, Recht & Soltanolkotabi, 2016].
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PGD CONVERGENCE RATE

• 𝜌 = sup
𝑈,𝑊∈𝐶𝑓 𝑍 ∩ℬ𝑑

𝑈 𝐼 − 𝜇𝐴𝐴𝑇 𝑊𝑇 is the 

convergence rate of PGD.

• Let 𝜔 be the Gaussian mean width of 𝐶𝑓 𝑍 ∩ ℬ𝑑. 

• If 𝜇 =
1

𝑚+ 𝑑
2 ≃

1

𝑑
then 𝜌 = 1 − 𝑂

𝑚−𝜔

𝑚+𝑑
.

• If 𝜇 =
1

𝑚
then 𝜌 = 𝑂

𝜔

𝑚
. 

• For the 𝑘-sparse model 𝜔2 = 𝑂 𝑘log d

• For GMM with 𝑘 Gaussians  𝜔2 = 𝑂 𝑘 .

• How may we cause 𝜔 to become smaller for having a 
better convergence rate?
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INACCURATE PROJECTION

• PGD iterations projects onto Υ =  𝑍: 𝑓  𝑍 ≤ 𝑅 .

• Smaller Υ ⇒ Smaller 𝜔.

Faster convergence as

𝜌 = 1 − 𝑂
𝑚−𝜔

𝑚+𝑑
or 𝑂

𝜔

𝑚

• Let us assume that our signal belongs to a smaller set 
 Υ =  𝑍:  𝑓  𝑍 ≤ 𝑅 with  𝜔 ≪ 𝜔. 

• Ideally, we would like to project 
onto  Υ instead of Υ.

• This will lead to faster convergence.

• What if such a projection is not feasible?

⇒ 𝒇( 𝒁) ≤ 𝑹

 𝒇( 𝒁) ≤ 𝑹

39
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INACCURATE PROJECTION

• We will estimate the projection onto  Υ by

• A linear projection 𝑃

• Followed by a projection onto Υ

• Assumptions:

• ℘Υ(𝑍𝑃)−𝑍 ≤ ϵ

Projection of the target vector 𝑍
onto P and then onto Υ

 𝒇( 𝒁) ≤ 𝑹

40



INACCURATE PGD (IPGD)

𝝍 projects onto 
the set Υ

𝒇(𝒁) ≤ 𝑹

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

𝝁𝑨𝑻𝑷 𝝍

𝑰 − 𝝁𝑨𝑨𝑻 𝑷

 𝒁+

 𝜰

𝜇 is the 
step size

Estimate of 𝑍.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑽 −  𝒁𝑨

𝒔. 𝒕.  𝒇( 𝒁) ≤ 𝑹

 𝒇(𝒁) ≤ 𝑹

41



THEORY FOR IPGD

• Theorem 9: Let 𝑍 ∈ ℝ𝑑, 𝑓: ℝ𝑑 → ℝ a proper convex* 
function, 𝑓 𝑍 ≤ 𝑅,  𝐶𝑓(𝑍) the tangent cone of 𝑓 at 
point 𝑍, 𝐴 ∈ ℝ𝑑×𝑚 a random Gaussian matrix and 𝑉
= 𝑍𝐴 + 𝐸. Then the estimate of IPGD at iteration 𝑡, 
 𝑍𝑡, obeys

 𝑍𝑡 − 𝑍 ≤ 𝜌𝑃
𝑡 +

1 − 𝜌𝑃
𝑡

1 − 𝜌𝑃
 𝜖 𝑍 ,

where 𝜌𝑝 = sup
𝑈,𝑊∈𝐶𝑓 𝑍 ∩ℬ𝑑

𝑈𝑃 𝐼 − 𝜇𝐴𝐴𝑇 𝑃𝑊𝑇

and   𝜖 = (2 + 𝜌𝑝)ϵ.
[Giryes, Eldar, Bronstein & Sapiro, 2016]

42*We have a version of this theorem also when 𝑓 is non-proper or non-convex function



CONVERGENCE RATE COMPARISON

• PGD convergence:

𝜌 𝑡

• IPGD convergence:

𝜌𝑃
𝑡 +

1 − 𝜌𝑃
𝑡

1 − 𝜌𝑃
(2 + 𝜌𝑝)𝜖

 ≃
(𝑎)

𝜌𝑃
𝑡 + 𝜖  ≃

(𝑏)

𝜌𝑃
𝑡  ≪

(𝑐)

𝜌 𝑡

(a)𝜖 is negligible compared to 𝜌𝑃

(b) For small values of 𝑡 (early iterations).

(c) Faster convergence as 𝜌𝑃 ≪ 𝜌 (because 𝜔𝑝 ≪ 𝜔).
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MODEL BASED COMPRESSED SENSING

•  Υ is the set of sparse vectors with sparsity patterns 
that obey a tree structure.

• Projecting onto  Υ improves convergence 
rate compared to projecting onto the set 
of sparse vectors Υ [Baraniuk et al., 2010].

• The projection onto  Υ is more 
demanding than onto Υ.

• Note that the probability of selecting atoms from 
lower tree levels is smaller than upper ones.

• 𝑃 will be a projection onto certain tree levels – zeroing 
the values at lower levels.

1

0.5 0.5

0.25 0.25 0.25 0.25

44



MODEL BASED COMPRESSED SENSING

Non-zeros picked 
entries has zero mean 
random Gaussian 
distribution with 
variance:
- 1 at first two levels
- 0.52 at the third level
- 0.22 at the rest of 
the  levels
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SPECTRAL COMPRESSED SENSING

•  Υ is the set of vectors with sparse representation 
in a 2-times redundant DCT dictionary such that: 

• The active atoms are selected uniformly at random such that  
minimum distance between neighboring atoms is 20.

• The value of each representation coefficient ~𝑁(0,1) i.i.d.

• We set the neighboring coefficients at distance 2 of each active 
atom to be ~𝑁(0,0.012) , respectively

• We set 𝑃 to be a pooling-like operation that keeps 
in each window of size 3 only the largest value.
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SPECTRAL COMPRESSED SENSING
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SPECTRAL COMPRESSED SENSING

•  Υ is the set of vectors with sparse representation 
in a 4-times redundant DCT dictionary such that: 

• The active atoms are selected uniformly at random such that  
minimum distance between neighboring atoms is 5.

• The value of each representation coefficient ~𝑁(0,1) i.i.d.

• We set the neighboring coefficients at distance 1 and 2 of each 
active atom to be ~𝑁(0,0.12) and ~𝑁(0,0.012) , respectively

• We set 𝑃 to be a pooling-like operation that keeps 
in each window of size 5 only the largest value.
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SPECTRAL COMPRESSED SENSING
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LEARNING THE PROJECTION

• If we have no explicit information about  Υ it might 
be desirable to learn the projection. 

• Instead of learning 𝑃, it is possible to replace 

𝐼 − 𝜇𝐴𝐴𝑇 𝑃 and 𝜇𝐴𝑇𝑃 with two learned matrices 

𝑆 and 𝑋 respectively.

• This leads to a very similar scheme to the one of 
LISTA and provides a theoretical foundation for the 
success of LISTA.
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LEARNED IPGD

𝝍 projects onto 
the set 𝜰

𝒇(𝒁) ≤ 𝑹

𝑽 ∈ ℝ𝒅 𝑿 𝝍  𝒁+

Estimate of 𝒁.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑽 −  𝒁𝑨

𝒔. 𝒕.  𝒇( 𝒁) ≤ 𝑹

Learned 
linear  

operators
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𝑽 = 𝒁𝑨 + 𝑬
 𝜰

 𝒇(𝒁) ≤ 𝑹

𝑺



LISTA

𝜓 is a proximal 
mapping.

𝝍 𝑼 =

𝐚𝐫𝐠𝐦𝐢𝐧
 𝒁∈ℝ𝒅

𝑼 −  𝒁

+𝝀𝒇( 𝒁)

𝑽 ∈ ℝ𝒅

𝑽 = 𝒁𝑨 + 𝑬

𝑿 𝝍

𝑺

 𝒁+

 𝜰

Estimate of 𝒁.
Aim at solving

𝒎𝒊𝒏
 𝒁

𝑽 −  𝒁𝑨

+𝝀 𝒇( 𝒁)

 𝒇(𝒁) ≤ 𝑹

Learned 
linear  

operators
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LISTA MIXTURE MODEL

• Approximation of the projection onto  Υ
with one linear projection may not 
be accurate enough.

• This requires more LISTA layers/iterations.

• Instead, one may use several LISTA networks, 
where each approximates a different part of  Υ

• Training multiple LISTA networks
accelerate the convergence further.

 Υ

 Υ
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LISTA MIXTURE MODEL
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RELATED WORKS

• In [Bruna et al. 2016] it is shown that a learning 
may give a gain due to better preconditioning of A.

• In [Xin et al. 2016] a relation to the restricted 
isometry property (RIP) is drawn

• In [Borgerding & Schniter, 2016] a connection is 
drawn to approximate message passing (AMP).

• All these works consider only the sparsity case
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Take 
Home 

Message

Generalization 
error depends 

on the DNN 
input margin

DNN may 
solve 

optimization 
problems
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QUESTIONS?

WEB.ENG.TAU.AC.IL/~RAJA
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GAUSSIAN MEAN WIDTH

• Gaussian mean width:
𝝎 𝜰 = 𝑬 𝐬𝐮𝐩

𝑽,𝑾∈𝜰
𝑽 − 𝑾, 𝒈 ,       𝒈~𝑵(𝟎, 𝑰).

𝑾

𝑽

𝜰

𝒈
The width of 
the set 𝜰 in 

the direction 
of 𝒈:
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MEASURE FOR LOW DIMENSIONALITY

• Gaussian mean width:
𝝎 𝜰 = 𝑬 𝐬𝐮𝐩

𝑽,𝑾∈𝜰
𝑽 − 𝑾, 𝒈 ,       𝒈~𝑵(𝟎, 𝑰).

• 𝝎𝟐 𝜰 is a measure for the dimensionality of the 
data.

• Examples:

If Υ ⊂ 𝔹𝑑 is a Gaussian 
Mixture Model with 𝑘
Gaussians then

𝝎𝟐 𝜰 = 𝑶(𝒌)

If Υ ⊂ 𝔹𝑑 is a data 
with 𝑘-sparse 
representations then
𝝎𝟐 𝜰 = 𝑶(𝒌 𝐥𝐨𝐠 𝒅)
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