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h-d A probabilistic approach to modelling

UNIVERSITET

Data on its own is typically useless, it is only when we can extract
knowledge from the data that it becomes useful.

Representation of the data: A model with unknown (a.k.a. latent
or missing) variables related to the knowledge we are looking for.

Key concept: Uncertainty.

Key ingredient: Data.

Probability theory and statistics provide the theory and practice
that is needed for representing and manipulating uncertainty about
data, models and predictions.

Machine learning gives computers the ability to learn without
being explicitly programmed for the task at hand.
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The three cornerstones

UNIVERSITET

(Cornerstone 1 (Data) Typically we need lots of it. )

[ Cornerstone 2 (Mathematical model) A mathematical |
model is a compact representation of the data that in pre-
cise mathematical form captures the key properties of the
kunderlying situation.

4 N
Cornerstone 3 (Learning algorithm) Used to compute the

unknown variables from the observed data using the model.
\ 7
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What is a dynamical system?

UNIVERSITET

Something evolving over time with a memory.

Zo z1 x2 T
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)
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= Probabilistic modeling of dynamical systems
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Probabilistic modeling allow for representing and manipulating
uncertainty in data, models, decisions and predictions.

A parametric state space model is given by:

Tep1 = folxe, ue) +vog, T |z~ po(wern |2, ue),
ye = go(e, us) + eoy, Yel oo ~ po(ye | o0, ue),
x1 ~ py(z1), z1 ~ pp(71),

0 ~ p(0). 0 ~ p(0).

The full probabilistic model is given by

p(xir, 0, y1.1) = plyrr | 1.1, 0) plair, )
———— ——

data distribution prior
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%% Probabilistic modeling of dynamical systems

UNIVERSITET

Distribution describing a parametric nonlinear state space model:

" —
observation dynamics state  param.

T T-1
p(zrr, 0, y1:1) = Hp(yt | z¢,0) H Py | @, 0) (a1 | 0) p(0)
t=1 =1

data distribution prior

( Model = probability distribution! )

Aim: Construct a flexible model and compute its posterior
distribution

p(z1.7,0 | y1.r) = plxir |0, yi.r) p(0 | ya1:7) -
—————— ——

state parameter
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v  Example — “what are z;, 0 and y,"?

UNIVERSITET

Aim (motion capture): Compute z; (position and orientation of
the different body segments) of a person (¢ describes the body
shape) moving around indoors using measurements y;
(accelerometers, gyroscopes and ultrawideband).

Manon Kok, Jeroen D. Hol and Thomas B. Schén. Indoor positioning using ultrawideband and inertial
measurements. |EEE Transactions on Vehicular Technology, 64(4):1293-1303, April, 2015.

Manon Kok, Jeroen D. Hol and Thomas B. Schon. Using inertial sensors for position and orientation estimation
Pre-print, arXiv:1704.06053, April, 2017.
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@% Use flexible models

UNIVERSITET

Key lesson from modern Machine Learning:

( Flexible models often gives the best performance. )

How can we build flexible models?

1. Models that use a large (but fixed) number of parameters.

(parametric, ex. deep learning)
LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436-444, 2015.

2. Models that use more parameters as we get more data.
(non-parametric, ex. Gaussian process)

Ghahramani, Z. Bayesian nonparametrics and the probabilistic approach to modeling. Phil. Trans. R.
Soc. A 371, 2013.

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.
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Outline
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1. Probabilistic modeling of dynamical systems

2. Gaussian Process (GP) introduction
3. GP state space model

a) Model construction
b) Sequential Monte Carlo (SMC)
(c) Learning using SMC within Gibbs)

4. Examples
5. Some related ongoing research

6. Conclusions

Probabilistic modeling allows us to systematically represent
and manipulate uncertainty.
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@? The Gaussian process model

UNIVERSITET

The Gaussian process (GP) is a non-parametric and probabilistic
model for nonlinear functions.

e Non-parametric means that it does not rely on any particular
parametric functional form to be postulated.

e Probabilistic means that it takes uncertainty into account in
every aspect of the model.

Fredrik Lindsten, Thomas B. Schon and
Michael I. Jordan. Bayesian semiparametric
Wiener system identification. Automatica,
49(7): 2053-2063, July 2013.
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An abstract idea
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In probabilistic linear regression

yi = Bl ai+ei, i~ N(0,0%),
——
f(=)

we place a prior on 3, B ~ N(O,O’QIp).

f (Abstract) idea: What if we instead place a prior directly‘
on the function f(-)

f~p(f)

and look for p(f|y) rather than p(5|y)?!
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..  An abstract idea — pictures
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What does it actually mean to have a prior over functions?

A f? P
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X X

Can we construct a probabilistic object operating on functions?
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UPPsALA One concrete construction

UNIVERSITET

Well, one (arguably simple) idea on how we can reason
probabilistically about an unknown function f is by assuming that
f(z) and f(2') are jointly Gaussian distributed

() =¥ 0010

If we accept the above idea we can without conceptual problems
generalize to any arbitrary set of input values {z1,z2,...,zn}.
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@% Definition and its implications
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Definition: (Gaussian Process, GP) A GP is a (potentially
infinite) collection of random variables such that any finite
subset of it is jointly distributed according to a Gaussian.

Our definition means that for any arbitrary set of input values
{z1,z9,...,2N} we have

f(l’l) m(azl) k(l’l,l’l) e k(:cl,xN)
. ~ N : . . .

Flan) mzx))  \k(zn,21) ... k(zx,zx)
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We now have a prior!

SALA
UNIVERSITET

( f ~ GP(m. k) )

The GP is a generative model so let us first sample from the prior.

~ - o INITZmwN/
N / SSr
4 \_/
-6
6 4 2 0 2 4 6
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- cP regression
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Remaining problem: Given training data 7 = {xi,yi}ij\il

and our GP prior [ ~ GP(m, k) compute p(f,|y) for an
arbitrary test point (2., yx).

()= () (5055 ™ )

The conditioning theorem for partitioned Gaussians results in

fx |y NN(M*7I€*)?
p = m(z,) +s' (y —m(x)),
ky = k(xy, xy) — sTk(x, T)s

where
sT = k(z,,x)(k(x,x) + o2Iy) L.
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GP regression — illustration

Thomas Schon
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Outline
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1. Probabilistic modeling of dynamical systems

2. Gaussian Process (GP) introduction
3. GP state space model

a) Model construction
b) Sequential Monte Carlo (SMC)
(c) Learning using SMC within Gibbs)

4. Examples
5. Some related ongoing research

6. Conclusions

Probabilistic modeling allows us to systematically represent
and manipulate uncertainty.

17 /37  Thomas Schon ACCESS Data Analytics Workshop, KTH, Stockholm, May 15, 2017.



& .
%2; Gaussian process state space model

UNIVERSITET

( Flexible models often gives the best performance. )

w1 = fz) v, st f(@) ~ GP(0, Ky p(w,27)),
yr = g(x1) + e, st g(z) ~ GP(0, Ky gz, 2")).

The model functions f and ¢ are assumed to be realizations from
Gaussian process priors and v ~ N(0,Q), e ~ N (0, R).

We can now find the posterior distribution

p(f: g, Q7 R7 n ’ Z/l:T)7
via some approximation (VI or particle MCMC).

Frigola, Roger, Fredrik Lindsten, Thomas B. Schén, and Carl Rasmussen. Bayesian inference and learning in
Gaussian process state-space models with particle MCMC. In NIPS, 2013.

Frigola, Roger. Bayesian time series learning with Gaussian processes PhD thesis, University of Cambridge, 2015.

Andreas Svensson and Thomas B. Schon. A flexible state space model for learning nonlinear dynamical systems,
Automatica, 80:189-199, June, 2017.
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i Approximate Gaussian processes
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We use a “reduced-rank” GP approximation:
f~GPOK) & fla)x) w/¢l(x)
j=0

with prior

w ~ N(0,S(N))

L sin (L(GHL)).

Forxz e [-L,L] C R: NG 5T

©-
<.

—

&
I

Full GP m=9 m = 16

Arno Solin and Simo Sarkka. Hilbert Space Methods for Reduced-Rank Gaussian Process Regression.
arXiv:1401.5508, 2014.
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Computationally feasible GP-SSM

UPPSALA
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Original formulation:
Te1 = f(@) + v, vy ~ N(0,Q),
yr = g(x1) + e, et ~ N (0, R),
f(CL') ~ gP(O, /'ir],f(wa $/))

Formulation using the reduced-rank GP approximation:

Tpy1 = Zw%j(ﬂ?t) + vy, v ~ N(0,Q),
=0
yr = g(x¢) + ey, er ~N(0, R),

w! ~ N(0,S(\)).

Linear in the parameters w’ and nonlinear in the states ;.
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... The learning problem (dynamical systems)

UNIVERSITET

Compute the posterior distribution

p(ml:T7 0 | yl:T) = p(xlzT | 97 yl:T) p(@ | yl:T) .
—_—— —

state parameter

HD integration /optimization problems without analytical solution.

Sequential Monte Carlo provide approximations to
integration problems where there is a sequential structure
present.

Learning the parameters 0 is rather straightforward in the GP-SSM.

The states x1.7 are still challenging.
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A Sequential Monte Carlo (SMC)
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The distribution of interest () is called target distribution.

( )
(Abstract) problem formulation: Sample from a sequence

of probability distributions {v;(z1.1)}:+>1 defined on a se-
quence of spaces of increasing dimension, where

%(lezt)
Z:

Y (z1:4) =

such that J;(z;) : XX — RT is known pointwise and Z; =
[ v(@1:¢)dz14 is often computationally challenging.
\

1. Approximate the normalizing constant Z;.
2. Approximate () and compute integrals [ o(z)ye(2;)day.

Important question: How general is this formulation?
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.. Sequential Monte Carlo (SMC)

UNIVERSITET

The sequence of target distributions {~;(z1.1)};~, can be
constructed in many different ways.

The most basic construction arises from chain-structured graphs,
such as the state space model (SSM).

xrT

0 Ty To
O ) )

Y1 Y2 yr

Ft(z1:¢)
Y (z1:¢)
o p(xlztaylzt)
p(r1e | Y1) = —F———
p(y1:t)
—
Zt
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Sequential Monte Carlo (SMC)
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The particle filter approximates p(xy. | y1.) for

i1 = folae, ue) + voy,
ye = go(ws,ue) + €0.t5

by maintaining an empirical distribution made up of IV samples
(particles) {x%,}Y, and corresponding weights {w?,,}¥

N i
~ Wy
p(l‘l:t!@ﬂ:t) = E =N ~5;,gvi_ (xlzt)~
v i=1 23:1 wl

A(w1:e)

“The particle filter provides a systematic way of exploring the state
space.”
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Example — indoor localization

UNIVERSITET

Aim: Compute the position of a person moving around indoors
using sensors (inertial, magnetometer and radio) located in an ID
badge and a map, i.e. compute p(x; |y1:¢).

Show movie
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.. Sequential Monte Carlo — particle filter

UNIVERSITET

Y

Propagation |—>| Weighting |—-| Resampling

SMC = sequential importance sampling + resampling

1. Propagation: x% ~ f(x ] x(ll;zt—l) and CCli:t = {x(ﬁt—hx%}'
2. Weighting: wi = Wy(z}) = g(y; | x1).
3. Resampling: P (a} = j) = 711,5',1/21 W}

The ancestor indices {a{}¥, are very useful auxiliary variables!
They make the stochasticity of the resampling step explicit.
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h-d The nonlinear SSM is just a special case...

UNIVERSITET

Constructing an artificial sequence of intermediate target
distributions for an SMC sampler is a powerful (and quite
possibly underutilized) idea.

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schén, Sequential Monte Carlo methods for graphical
models. Advances in Neural Information Processing Systems (NIPS) 27, Montreal, Canada, December, 2014.

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schén, Nested sequential Monte Carlo. In Proceedings of
the 32nd International Conference on Machine Learning (ICML), Lille, France, July, 2015.
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“ Particle MCMC = SMC + MCMC

UNIVERSITET

A systematic way of combining SMC and MCMC.
Builds on an extended target construction.

Intuitively: SMC is used as a high-dimensional proposal
mechanism on the space of state trajectories X'

A bit more precise: Construct a Markov chain with
p(0, x1.7 | y1.7) (or one of its marginals) as its stationary
distribution. Also used for parameter learning.

( Exact approximations )

Pioneered by the work

Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.
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Resulting strategy/algorithm

UNIVERSITET

Strategy Bayesian learning of the GP-SSM

1. Initialize: Set 6[0].
2. for k=1 to K do:
(a) Sample z1.7[k] using CPF-AS.
(b) Sample 6[k] using closed form conjugate relationships.

3. end for

For all the details see

Andreas Svensson and Thomas B. Schén. A flexible state space model for learning nonlinear dynamical systems,
Automatica, 80:189-199, June, 2017.

Alternative approach using VI
Roger Frigola, Yutian Chen, and Carl E. Rasmussen. Variational Gaussian process state-space models. In

Advances in Neural Information Processing Systems 27 (NIPS), 2014.
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w  Toy example
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Maximum likelihood without
regularization

141

0

[

‘.
)
/

x E
T¢+1 = 10sinc (%) + vy v~ _/\/'(O7 4) L0 —20 -0 0 0 2 30

Yt = Ty + ey (known) er ~ _/\/'(O7 4) Maximum likelihood with
(GP-inspired) regularization
T = 40,m = 40 -
[ Posterior model uncertainty B @

[ ,carned model

== True state transition function .
e State samples underlying data posterior

Basis functions B ‘

Bayesian learning: Full

Teg1

o N

10
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Narendra-Li Benchmark
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T = (W v 1) sin(z?) Method | RMSE | T
. ... GP-SSM 0.06 | 2000
$?+1 =x? cos(a:f) + z} exp (—W) Roll et al. 0.43 50000
(un)? Stenman et al. 0.46 50000
+ T e T Xu et al. (AHH) | 0.31 | 2000
r g Xu et al. (MARS) | 0.49 | 2000

— t
Yt =150 5sin(?) + 140.5sin(al)

J. Roll, A. Nazin, and L. Ljung. Nonlinear system identification via direct weight optimization. Automatica,

41(3):475-490, 2005.

A. Stenman. Model on demand: Algorithms, analysis and applications. PhD thesis, Linképing University, 1999.

J. Xu, X. Huang, and S. Wang. Adaptive hinging hyperplanes and its applications in dynamic system

identification. Automatica, 45(10):2325-2332, 2009.

31/37  Thomas Schon ACCESS Data Analytics Workshop, KTH, Stockholm, May 15, 2017.



@? Regularization in nonlinear state spaces

UNIVERSITET

We can also solve a (regularized) maximum likelihood problem.

Results in a flexible non-
parametric model where the
GP prior on f takes on the
role of a regularizer.

— T T —T
----- True function

------ Standard deviation of w;

= Identified function

—— Estimated standard deviation of w,

-2 0 2

Provides a data-driven way of
tuning the model flexibility.

zry1 = f(@t)

-2 0 2

Toy example:

Ty
T =—-10— +v
t+1 1+ 322 + vy,

Yt = Ty + €.

-2 0 2
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Outline
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1. Probabilistic modeling of dynamical systems

2. Gaussian Process (GP) introduction
3. GP state space model

a) Model construction
b) Sequential Monte Carlo (SMC)
(c) Learning using SMC within Gibbs)

4. Examples
5. Some related ongoing research

6. Conclusions

Probabilistic modeling allows us to systematically represent
and manipulate uncertainty.
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o Linearly constrained GPs

UNIVERSITET

Problem formulation: Modification of the covariance function in
a GP to correctly account for known linear operator constraints.

1. By modelling the target function as
a transformation of an underlying LU I::gi]'[u}
function the constraints are
explicitly incorporated into the
model.

2. Result:

a) A probabilistic model that is
guaranteed to fulfil the
constraints.

b) A constructive procedure for
designing the transformation.

o3 [m]

Carl Jidling, Niklas Wahlstrom, Adrian Wills and Thomas B. Schén. Linearly constrained Gaussian processes.
Pre-print arXiv:1703:00787, March, 2017.
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%% Online learning for distribution-free prediction
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Problem formulation: Predict y given x using observed data
generated by some unknown distribution (x,y) ~ po(x,y).

Goals: Learn a predictor function ¢(x)

-4500
. . 450

1. inanonline mannerasn =1,2,...
— 400
2. with performance guarantees 2 e | o

3. and with calibrated uncertainty
quantification.

-7000
-2000

Dave Zachariah, Petre Stoica and Thomas B. Schén. Online learning for distribution-free prediction. Pre-print
arXiv:1703.05060, March, 2017.

Visit our poster after the talk
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i)
e

GP prediction performance after learning
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Problem formulation: Quantify the uncertainty of the prediction
f(zy) at a test point x, when f(z) is a GP model that has been
learnt from data {z;,y;}Y |, where y = f(z) + .

Derive a fundamental lower bound of the MSE when the
hyper-parameters used in the GP for f are learnt from data.

Available in closed-form and simple and cheap to compute.

a5 HCRB region
Credibility region
® Training data Y-
= a0 ® Test data 8 SHEY
c # FE
5 & 4~ v
= Vs £ .-"s- 5
g a o
g LA RSR w
3 S v
S S
370 o
~ Py A
Py &
355

1995 2000 2005 2010 2015 2020

Johan Wagberg, Dave Zachariah, Thomas B. Schon and Petre Stoica. Prediction performance after learning in
Gaussian process regression. In AISTATS, Fort Lauderdale, FL, USA, April, 2017.

Visit our poster after the talk
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@% Conclusions
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Constructed a Gaussian process state space model.

Prior = regularization, helping the model to generalize
without sacrificing the flexibility offered by the basis
function expansion.

A flexible model often gives the best performance.
The resulting learning problem require approximations.

SMC highly useful in computing these approximations.

Hosting the SMC workshop in Uppsala, Aug. 30-Sep. 1, 2017.
www.it.uu.se/conferences/smc2017
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