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A probabilistic approach to modelling

Data on its own is typically useless, it is only when we can extract
knowledge from the data that it becomes useful.

Representation of the data: A model with unknown (a.k.a. latent
or missing) variables related to the knowledge we are looking for.

Key concept: Uncertainty.

Key ingredient: Data.

Probability theory and statistics provide the theory and practice
that is needed for representing and manipulating uncertainty about
data, models and predictions.

Machine learning gives computers the ability to learn without
being explicitly programmed for the task at hand.
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The three cornerstones

Cornerstone 1 (Data) Typically we need lots of it.

Cornerstone 2 (Mathematical model) A mathematical
model is a compact representation of the data that in pre-
cise mathematical form captures the key properties of the
underlying situation.

Cornerstone 3 (Learning algorithm) Used to compute the
unknown variables from the observed data using the model.
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What is a dynamical system?

Something evolving over time with a memory.

Background – what we do in the team

We automate the extraction of knowledge and understanding
from data.

Both basic research and applied research (with companies).

Thomas Schön - user.it.uu.se/~thosc112 
Big data and deep leaning, possible applications within image diagnostics

Vitalis 
April 5, 2016

What we do in our team

These models can be used by machines and/or humans to automatically 
understand and/or make decisions about what will happen next.

Create new probabilistic models for dynamical systems and develop  
methods to automatically learn these models from measured data.

Create probabilistic models for dynamical systems and their
surroundings.

Develop methods to learn models from data.

The models can then be used by machines (or humans) to
understand and/or take decisions about what will happen next.
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Probabilistic modeling of dynamical systems

Probabilistic modeling allow for representing and manipulating
uncertainty in data, models, decisions and predictions.

A parametric state space model is given by:

xt+1 = fθ(xt, ut) + vθ,t,

yt = gθ(xt, ut) + eθ,t,

x1 ∼ pθ(x1),

θ ∼ p(θ).

xt+1 |xt ∼ pθ(xt+1 |xt, ut),
yt |xt ∼ pθ(yt |xt, ut),

x1 ∼ pθ(x1),

θ ∼ p(θ).

The full probabilistic model is given by

p(x1:T , θ, y1:T ) = p(y1:T |x1:T , θ)︸ ︷︷ ︸
data distribution

p(x1:T , θ)︸ ︷︷ ︸
prior
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Probabilistic modeling of dynamical systems

Distribution describing a parametric nonlinear state space model:

p(x1:T , θ, y1:T ) =

T∏

t=1

p(yt |xt, θ)︸ ︷︷ ︸
observation︸ ︷︷ ︸

data distribution

T−1∏

t=1

p(xt+1 |xt, θ)︸ ︷︷ ︸
dynamics

p(x1 | θ)︸ ︷︷ ︸
state

p(θ)︸︷︷︸
param.︸ ︷︷ ︸

prior

Model = probability distribution!

Aim: Construct a flexible model and compute its posterior
distribution

p(x1:T , θ | y1:T ) = p(x1:T | θ, y1:T )︸ ︷︷ ︸
state

p(θ | y1:T )︸ ︷︷ ︸
parameter

.
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Example – “what are xt, θ and yt”?

Aim (motion capture): Compute xt (position and orientation of
the different body segments) of a person (θ describes the body
shape) moving around indoors using measurements yt
(accelerometers, gyroscopes and ultrawideband).

Data intensive modeling in dynamical systems
Thomas Schön, Uppsala University

The Royal Swedish Academy of Sciences 
Stockholm, September 19, 2013

An experiment to illustrate the importance of a model

ω"

a$g"

m"

Inertial sensors Bio-mechanical Ultra-wideband The world

Task: Find the position and orientation of a human (human motion). 

Key models:

Manon Kok, Jeroen D. Hol and Thomas B. Schön. Indoor positioning using ultrawideband and inertial
measurements. IEEE Transactions on Vehicular Technology, 64(4):1293-1303, April, 2015.

Manon Kok, Jeroen D. Hol and Thomas B. Schön. Using inertial sensors for position and orientation estimation
Pre-print, arXiv:1704.06053, April, 2017.
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Use flexible models

Key lesson from modern Machine Learning:

Flexible models often gives the best performance.

How can we build flexible models?

1. Models that use a large (but fixed) number of parameters.
(parametric, ex. deep learning)
LeCun, Y., Bengio, Y., and Hinton, G. Deep learning, Nature, Vol 521, 436–444, 2015.

2. Models that use more parameters as we get more data.
(non-parametric, ex. Gaussian process)
Ghahramani, Z. Bayesian nonparametrics and the probabilistic approach to modeling. Phil. Trans. R.
Soc. A 371, 2013.

Ghahramani, Z. Probabilistic machine learning and artificial intelligence. Nature 521:452-459, 2015.
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Outline

1. Probabilistic modeling of dynamical systems

2. Gaussian Process (GP) introduction

3. GP state space model

a) Model construction
b) Sequential Monte Carlo (SMC)

(c) Learning using SMC within Gibbs)

4. Examples

5. Some related ongoing research

6. Conclusions

Probabilistic modeling allows us to systematically represent
and manipulate uncertainty.
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The Gaussian process model

The Gaussian process (GP) is a non-parametric and probabilistic
model for nonlinear functions.

• Non-parametric means that it does not rely on any particular
parametric functional form to be postulated.

• Probabilistic means that it takes uncertainty into account in
every aspect of the model.
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Fredrik Lindsten, Thomas B. Schön and
Michael I. Jordan. Bayesian semiparametric
Wiener system identification. Automatica,
49(7): 2053-2063, July 2013.
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An abstract idea

In probabilistic linear regression

yi = βTxi︸ ︷︷ ︸
f(x)

+εi, εi ∼ N (0, σ2),

we place a prior on β, β ∼ N (0, σ2Ip).

(Abstract) idea: What if we instead place a prior directly
on the function f(·)

f ∼ p(f)

and look for p(f |y) rather than p(β |y)?!
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An abstract idea – pictures

What does it actually mean to have a prior over functions?

Chapter 3

Gaussian Processes

The Gaussian process (GP) is a nonparametric and probabilistic model also for nonlinear relationships. Here
we will use it for the purpose of regression. The nonparametric nature means that the GP does not rely on
any parametric model assumption—instead the GP is flexible with the capability to adapt the model complexity
as more data arrives. This means that the training data is not summarized by a few parameters (as for linear
regression) but is part of the model (as for k-NN). The probabilistic nature of the GP provides a structured way of
representing and reasoning about the uncertainty that is present both in the model itself and the measured data.

3.1 Constructing the Gaussian process

x1 x2 x3

y1

y2

y3

X

Y

(a) The data {xi, yi}3i=1, which we want to have a model for.

x1 x2 x3

f?

f?

f?

X
Y

(b) We assume there exists some function f , which describes
the data as yi = f(xi) + εi.

Figure 3.1: Some data are shown in the left panel, which would not be well explained by a linear model. Instead, we assume
there exists some function f (right panel), about which we are going to reason by making use of the Gaussian process.

Assume that we want to fit a model to some training data T = {xi, yi}3i=1, as we show in Figure 3.1a.
We could make use of linear regression, but even from just these three data points it looks like a simple linear
regression model Y = β0 + β1X + ε might be inadequate. Using nonlinear transformations of the input X
(polynomials, say) is a possibility, but it can be hard to know what transformations to consider in practice. Instead,
we try a different approach in specifying a model. Instead of assuming that we have a linear function, let us just
say there exists some (possibly non-linear) function f , which describes the data points as yi = f(xi) + εi, as
illustrated by Figure 3.1b.

For two different input values x and x′, the unknown function f takes some output values f(x) and f(x′),
respectively. Let us now reason probabilistically about this unknown f , by assuming that f(x) and f(x′) are

14

Can we construct a probabilistic object operating on functions?
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One concrete construction

Well, one (arguably simple) idea on how we can reason
probabilistically about an unknown function f is by assuming that
f(x) and f(x′) are jointly Gaussian distributed

(
f(x)
f(x′)

)
∼ N (µ,K)

If we accept the above idea we can without conceptual problems
generalize to any arbitrary set of input values {x1, x2, . . . , xN}.
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Definition and its implications

Definition: (Gaussian Process, GP) A GP is a (potentially
infinite) collection of random variables such that any finite
subset of it is jointly distributed according to a Gaussian.

Our definition means that for any arbitrary set of input values
{x1, x2, . . . , xN} we have



f(x1)

...
f(xN )


 ∼ N






m(x1)

...
m(xN )


 ,



k(x1, x1) . . . k(x1, xN )

...
. . .

...
k(xN , x1) . . . k(xN , xN )
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We now have a prior!

f ∼ GP(m, k)

The GP is a generative model so let us first sample from the prior.
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GP regression

Remaining problem: Given training data T = {xi, yi}Ni=1

and our GP prior f ∼ GP(m, k) compute p(f? |y) for an
arbitrary test point (x?, y?).

(
y
f?

)
∼ N

((
m(x)
m(x?)

)
,

(
k(x,x) + σ2IN k(x, x?)

k(x?,x) k(x?, x?)

))
,

The conditioning theorem for partitioned Gaussians results in

f? |y ∼ N (µ?, k?) ,

µ? = m(x?) + sT(y −m(x)),

k? = k(x?, x?)− sTk(x, x?),

where
sT = k(x?,x)(k(x,x) + σ2IN )−1.
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GP regression – illustration
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Outline

1. Probabilistic modeling of dynamical systems

2. Gaussian Process (GP) introduction

3. GP state space model
a) Model construction
b) Sequential Monte Carlo (SMC)

(c) Learning using SMC within Gibbs)

4. Examples

5. Some related ongoing research

6. Conclusions

Probabilistic modeling allows us to systematically represent
and manipulate uncertainty.
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Gaussian process state space model

Flexible models often gives the best performance.

xt+1 = f(xt) + vt, s.t. f(x) ∼ GP(0, κη,f (x, x′)),

yt = g(xt) + et, s.t. g(x) ∼ GP(0, κη,g(x, x
′)).

The model functions f and g are assumed to be realizations from
Gaussian process priors and vt ∼ N (0, Q), et ∼ N (0, R).

We can now find the posterior distribution

p(f, g,Q,R, η | y1:T ),

via some approximation (VI or particle MCMC).

Frigola, Roger, Fredrik Lindsten, Thomas B. Schön, and Carl Rasmussen. Bayesian inference and learning in
Gaussian process state-space models with particle MCMC. In NIPS, 2013.

Frigola, Roger. Bayesian time series learning with Gaussian processes PhD thesis, University of Cambridge, 2015.

Andreas Svensson and Thomas B. Schön. A flexible state space model for learning nonlinear dynamical systems,
Automatica, 80:189-199, June, 2017.
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Approximate Gaussian processes

We use a “reduced-rank” GP approximation:

f ∼ GP(0, k) ⇔ f(x) ≈
m∑

j=0

wjφj(x)

with prior
wj ∼ N (0, S(λj))

For x ∈ [−L,L] ⊂ R: φj(x) = 1√
L

sin
(
πj(x+L)

2L

)
.

m = 4Full GP m = 16m = 9

Arno Solin and Simo Särkkä. Hilbert Space Methods for Reduced-Rank Gaussian Process Regression.
arXiv:1401.5508, 2014.
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Computationally feasible GP-SSM

Original formulation:

xt+1 = f(xt) + vt, vt ∼ N (0, Q),

yt = g(xt) + et, et ∼ N (0, R),

f(x) ∼ GP(0, κη,f (x, x′))

Formulation using the reduced-rank GP approximation:

xt+1 =
m∑

j=0

wjφj(xt) + vt, vt ∼ N (0, Q),

yt = g(xt) + et, et ∼ N (0, R),

wj ∼ N (0, S(λj)).

Linear in the parameters wi and nonlinear in the states xt.
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The learning problem (dynamical systems)

Compute the posterior distribution

p(x1:T , θ | y1:T ) = p(x1:T | θ, y1:T )︸ ︷︷ ︸
state

p(θ | y1:T )︸ ︷︷ ︸
parameter

.

HD integration/optimization problems without analytical solution.

Sequential Monte Carlo provide approximations to
integration problems where there is a sequential structure

present.

Learning the parameters θ is rather straightforward in the GP-SSM.

The states x1:T are still challenging.
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Sequential Monte Carlo (SMC)

The distribution of interest γ(x) is called target distribution.

(Abstract) problem formulation: Sample from a sequence
of probability distributions {γt(x1:t)}t≥1 defined on a se-
quence of spaces of increasing dimension, where

γt(x1:t) =
γ̄t(x1:t)

Zt
,

such that γ̄t(xt) : Xt → R+ is known pointwise and Zt =∫
γ(x1:t)dx1:t is often computationally challenging.

1. Approximate the normalizing constant Zt.

2. Approximate γt(xt) and compute integrals
∫
ϕ(xt)γt(xt)dxt.

Important question: How general is this formulation?
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Sequential Monte Carlo (SMC)

The sequence of target distributions {γt(x1:t)}nt=1 can be
constructed in many different ways.

The most basic construction arises from chain-structured graphs,
such as the state space model (SSM).

x0 x1 x2

. . .
xT

y1 y2 yT

γt(x1:t)︷ ︸︸ ︷
p(x1:t | y1:t) =

γ̄t(x1:t)︷ ︸︸ ︷
p(x1:t, y1:t)

p(y1:t)︸ ︷︷ ︸
Zt

γt(x1:t) = p(x1:t | y1:t),

Zt =

∫
γ(x1:t)dx1:t = p(y1:t).

γ̄t(x1:t) = p(x1:t, y1:t),
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Sequential Monte Carlo (SMC)

The particle filter approximates p(x1:t | y1:t) for

xt+1 = fθ(xt, ut) + vθ,t,

yt = gθ(xt, ut) + eθ,t,

by maintaining an empirical distribution made up of N samples
(particles) {xi1:t}Ni=1 and corresponding weights {wi1:t}Ni=1

p̂(x1:t | y1:t)︸ ︷︷ ︸
γ̂(x1:t)

=

N∑

i=1

wit∑N
j=1w

j
t

δxi1:t
(x1:t).

“The particle filter provides a systematic way of exploring the state
space.”
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Example – indoor localization

Aim: Compute the position of a person moving around indoors
using sensors (inertial, magnetometer and radio) located in an ID
badge and a map, i.e. compute p(xt | y1:t).

Sensor fusion using world models
Thomas Schön, users.isy.liu.se/rt/schon

Swarm Lab Seminar
Berkeley, CA

Example 3 - Indoor localization (II/III)

48 Approach

(a) An estimated trajectory at Xdin’s of-
fice, 1000 particles represented as circles,
size of a circle indicates the weight of the
particle.

(b) A scenario where the filter have not
converged yet. The spread in hypotheses
is caused by a large coverage for a coordi-
nator.

Figure 4.10. Output from the particle filter.

Figure 4.11. Illustration of a problematic case where a correct trajectory (green) is
being starved by an incorrect trajectory (red), causing the filter to potentially diverge.

2.5 Map 15

(a) Relative probability density for parts of
Xdin’s o�ce, the bright areas are rooms and
the bright lines are corridors that interconnect
the rooms
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(b) Cross section of the relative prob-
ability function for a line with di�er-
ent n

Figure 2.7. Probability interpretation of the map.

those would su�ce to give a magnitude of the force. The force is intuitively
directed orthogonally from the wall towards the target and multiple forces can
be added together to get a resulting force a�ecting the momentum of the target.

Equation (2.9) describes how the force is constructed. The function wallj(p)
is a convex function giving the magnitude and direction of the force given the
position of the target, p.

fi =
ÿ

jœW
wallj(pi), where W is the set of walls. (2.9)

If positions from other targets are available, repellent forces from them can be
modeled as well, which is thoroughly discussed in [22]. The concept is visualized
in Figure 2.8 where the target Ti is a�ected by two walls and another target
Tm, resulting in the force fi.

Figure 2.8. Force vectors illustrating the resulting force a�ecting a pedestrian.

PDF of an office environment, the bright areas 
are rooms and corridors (i.e., walkable space).

World model

Inference

Dynamic model

Sensor model

Sensors

Sensor fusion

Pose
Accelerometer

Gyroscope

Radio

Show movie
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Sequential Monte Carlo – particle filter

SMC = sequential importance sampling + resampling

1. Propagation: xit ∼ f(xt |xa
i
t

1:t−1) and xi1:t = {xa
i
t

1:t−1, x
i
t}.

2. Weighting: w̄it = Wt(x
i
t) = g(yt |xit).

3. Resampling: P
(
ait = j

)
= w̄jt−1/

∑
l w̄

l
t−1.

The ancestor indices {ait}Ni=1 are very useful auxiliary variables!
They make the stochasticity of the resampling step explicit.

26 / 37 Thomas Schön ACCESS Data Analytics Workshop, KTH, Stockholm, May 15, 2017.

Resampling Propagation Weighting Resampling Propagation



The nonlinear SSM is just a special case...

Constructing an artificial sequence of intermediate target
distributions for an SMC sampler is a powerful (and quite

possibly underutilized) idea.

y1 y2 y3

x1 x2 x3

x4

x5

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Sequential Monte Carlo methods for graphical
models. Advances in Neural Information Processing Systems (NIPS) 27, Montreal, Canada, December, 2014.

Christian A. Naesseth, Fredrik Lindsten and Thomas B. Schön, Nested sequential Monte Carlo. In Proceedings of
the 32nd International Conference on Machine Learning (ICML), Lille, France, July, 2015.
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Particle MCMC = SMC + MCMC

A systematic way of combining SMC and MCMC.

Builds on an extended target construction.

Intuitively: SMC is used as a high-dimensional proposal
mechanism on the space of state trajectories XT .

A bit more precise: Construct a Markov chain with
p(θ, x1:T | y1:T ) (or one of its marginals) as its stationary
distribution. Also used for parameter learning.

Exact approximations

Pioneered by the work
Christophe Andrieu, Arnaud Doucet and Roman Holenstein, Particle Markov chain Monte Carlo methods, Journal
of the Royal Statistical Society: Series B, 72:269-342, 2010.
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Resulting strategy/algorithm

Strategy Bayesian learning of the GP-SSM

1. Initialize: Set θ[0].

2. for k = 1 to K do:
(a) Sample x1:T [k] using CPF-AS.
(b) Sample θ[k] using closed form conjugate relationships.

3. end for

For all the details see
Andreas Svensson and Thomas B. Schön. A flexible state space model for learning nonlinear dynamical systems,
Automatica, 80:189-199, June, 2017.

Alternative approach using VI
Roger Frigola, Yutian Chen, and Carl E. Rasmussen. Variational Gaussian process state-space models. In
Advances in Neural Information Processing Systems 27 (NIPS), 2014.
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Toy example

xt+1 = 10sinc
(xt

7

)
+ vt vt ∼ N (0, 4)

yt = xt + et (known) et ∼ N (0, 4)

T = 40,m = 40

Posterior model uncertainty
Learned model
True state transition function
State samples underlying data
Basis functions

Maximum likelihood without
regularization

−30 −20 −10 0 10 20 30−
1
0

0
1
0

xt

x
t+

1

Maximum likelihood with
(GP-inspired) regularization

−30 −20 −10 0 10 20 30−
1
0

0
1
0

xt

x
t+

1

Bayesian learning: Full
posterior

−30 −20 −10 0 10 20 30−
1
0

0
1
0

xt

x
t+

1
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Narendra-Li Benchmark

x1
t+1 =

(
x1t

1+(x1t )
2 + 1

)
sin(x2

t )

x2
t+1 =x2

t cos(x
2
t ) + x1

t exp
(
− (x1t )

2+(x2t )
2

8

)
+ (ut)

3

1+(ut)2+0.5 cos(x1t+x
2
t )

yt =
x1t

1+0.5 sin(x2t )
+

x2t
1+0.5 sin(x1t )

+ et

Method RMSE T

GP-SSM 0.06 2 000
Roll et al. 0.43 50 000
Stenman et al. 0.46 50 000
Xu et al. (AHH) 0.31 2 000
Xu et al. (MARS) 0.49 2 000

J. Roll, A. Nazin, and L. Ljung. Nonlinear system identification via direct weight optimization. Automatica,
41(3):475–490, 2005.

A. Stenman. Model on demand: Algorithms, analysis and applications. PhD thesis, Linköping University, 1999.

J. Xu, X. Huang, and S. Wang. Adaptive hinging hyperplanes and its applications in dynamic system
identification. Automatica, 45(10):2325–2332, 2009.
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Regularization in nonlinear state spaces

We can also solve a (regularized) maximum likelihood problem.

m = 6

m = 100

m = 100
+ regularization

Data
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x
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1
=
f
(x

𝑡
)

True function
Standard deviation of 𝑤t

Identified function
Estimated standard deviation of 𝑤t

Fig. 1. The first example, with three different settings: 𝑚 = 6 basis
functions (top), 𝑚 = 100 basis functions (middle) and 𝑚 = 100 basis
functions with regularization (bottom). The model with 𝑚 = 6 is not flexible
enough to describe the ‘steep’ part of 𝑓 , but results in a sensible, albeit not
perfect, model. The second model is very flexible with its 101 parameters, and
becomes a typical case of over-fitting to the data points (cf. the distribution
of the data at the very bottom), causing numerical problems and a useless
model. The regularization in the third case is a clear remedy to this problem,
still maintaining the high flexibility of the model.

A natural question is indeed how to choose the prior preci-
sion 𝑃 . As stated by [12], the optimal choice (in terms of mean
square error) is 𝑃−1

opt = E
[︀
[𝜔(1) · · · 𝜔(𝑚)]T[𝜔(1) · · · 𝜔(𝑚)]

]︀
,

if we think of 𝜔(1), . . . , 𝜔(𝑚) as being random variables.
As an example, with the natural assumption of 𝑓𝑥(·) being
smooth, the diagonal elements of 𝑃 should be larger with
increasing order of the Fourier basis functions. The special
case of assuming 𝑓𝑥(·) to be a sample from a Gaussian process
is addressed by [14].

Other regularization schemes, such as 𝐿1, are possible but
will not result in closed-form expressions such as (9).

C. Computational aspects

Let 𝑁 denote the number of particles in the CPF-AS, 𝑚 the
numer of terms used in the basis function expansion, 𝑇 the
number of data points and 𝐾 the numer of iterations used in
Algorithm 2. The computational load is then 𝒪(𝑚𝑇𝐾𝑁) +
𝒪(𝑚3). In practice, 𝑁 and 𝑚 can be chosen fairly small (e.g.,
𝑁 = 5 and 𝑚 = 10 for a 1D model).

D. Convergence

The convergence properties of PSAEM are not yet fully
understood, but it can under certain assumptions be shown
to converge to a stationary point of 𝑝𝜃(𝑢1:𝑇 , 𝑦1:𝑇 ) by [17,
Theorem 1]. We have not experienced practical problems with
the convergence, although it is sensitive to initialization when
the dimension of 𝜃 is large (e.g., 1 000 parameters).

TABLE I
RESULTS FOR THE HAMMERSTEIN-WIENER BENCHMARK

Experiment with 𝑇 = 2000
Mean simulation error 0.0005 V

Standard deviation of simulation error 0.020 V
RMS simulation error 0.020 V

Run time 13 min

IV. NUMERICAL EXAMPLES

We demonstrate our proposed method on a series of numer-
ical examples. The source code is available via the web site
of the first author.

A. Simulated example

As a first simple numerical example, consider an au-
tonomous system (i.e., no 𝑢𝑡) defined by

𝑥𝑡+1 =
−10𝑥𝑡

1 + 3𝑥2
𝑡

+ 𝑤𝑡, 𝑦𝑡 = 𝑥𝑡 + 𝑒𝑡, (10)

where 𝑤𝑡 ∼ 𝒩 (0, 0.1) and 𝑒𝑡 ∼ 𝒩 (0, 0.5). We identify 𝑓(·)
and 𝑄 from 𝑇 = 1000 simulated measurements 𝑦1:𝑇 , while
assuming 𝑔(·) and 𝑅 to be known. We consider three different
settings with 𝑚 = 6 basis functions, 𝑚 = 100 basis functions
and 𝑚 = 100 basis functions with regularization, respectively,
all using the Fourier basis. To encode the a priori assumption
of 𝑓(·) being a smooth function, we choose the regularization
as a Gaussian prior of 𝑤𝑘 with standard deviation inversely
proportional to 𝑘. The results are shown in Figure 1, where
the over-fitting problem for 𝑚 = 100, and how regularization
helps, is apparent.

B. Hammerstein-Wiener benchmark

To illustrate how to adapt our approach to problems with
a given structure, we apply it to the real-data Hammerstein-
Wiener system identification benchmark by [20]. We will use
a subset with 2 000 data points from the original data set for
estimation. Based on the domain knowledge provided by [20]
(two third order linear systems in a cascade with a static
nonlinearity between), we identify a model with the structure

[︃
𝑥1
𝑡+1

𝑥2
𝑡+1

𝑥3
𝑡+1

]︃
= 𝐴1

[︃
𝑥1
𝑡

𝑥2
𝑡

𝑥3
𝑡

]︃
+𝐵𝑢𝑡, (11a)

[︃
𝑥4
𝑡+1

𝑥5
𝑡+1

𝑥6
𝑡+1

]︃
= 𝐴2

[︃
𝑥4
𝑡

𝑥5
𝑡

𝑥6
𝑡

]︃
+

[︃
Σ𝑘𝜔

(𝑘)𝜑(𝑘)(𝑥3
𝑡 )

0

0

]︃
, (11b)

𝑦𝑡 = 𝐶 [ 𝑥4
𝑡 𝑥5

𝑡 𝑥6
𝑡 ] , (11c)

where the superindex on the state denotes a particular com-
ponent of the state vector. Furthermore, we have omitted
all noise terms for notational brevity. There is only one
nonlinear function, but the linear parts can be seen as the
special case where {𝜑(𝑘)(𝑥)}𝑚𝑘=1 = {𝑥}, which can directly
be incorporated into the presented framework.

We present the results in Table I (all metrics are with respect
to the evaluation data from the original data set). We refer to
[21] for a thorough evaluation of alternative methods.

Results in a flexible non-
parametric model where the
GP prior on f takes on the
role of a regularizer.

Provides a data-driven way of
tuning the model flexibility.

Toy example:

xt+1 = −10
xt

1 + 3x2t
+ vt,

yt = xt + et.
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Outline

1. Probabilistic modeling of dynamical systems

2. Gaussian Process (GP) introduction

3. GP state space model

a) Model construction
b) Sequential Monte Carlo (SMC)

(c) Learning using SMC within Gibbs)

4. Examples

5. Some related ongoing research

6. Conclusions

Probabilistic modeling allows us to systematically represent
and manipulate uncertainty.
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Linearly constrained GPs

Problem formulation: Modification of the covariance function in
a GP to correctly account for known linear operator constraints.

1. By modelling the target function as
a transformation of an underlying
function the constraints are
explicitly incorporated into the
model.

2. Result:

a) A probabilistic model that is
guaranteed to fulfil the
constraints.

b) A constructive procedure for
designing the transformation.
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Linearly constrained Gaussian processes

Abstract
We consider a modification of the covariance
function in Gaussian processes to correctly ac-
count for known linear constraints. By modelling
the target function as a transformation of an un-
derlying function, the constraints are explicitly
incorporated in the model such that they are guar-
anteed to be fulfilled by any sample drawn or
prediction made. We also propose a constructive
procedure for designing the transformation op-
erator and illustrate the result on both simulated
and real-data examples.

1. Introduction
Bayesian non-parametric modelling has had a profound im-
pact in machine learning due, in no small part, to the flex-
ibility of these model structures in combination with the
ability to encode prior knowledge in a principled man-
ner (Ghahramani, 2015). These properties have been ex-
ploited within the class of Bayesian non-parametric models
known as Gaussian Processes (GPs), which have received
significant research attention and have demonstrated utility
across a very large range of real-world applications (Ras-
mussen & Williams, 2006).

Abstracting from the myriad number of these applications,
it has been observed that the efficacy of GPs modelling
is often intimately dependent on the appropriate choice of
mean and covariance functions, and the appropriate tuning
of their associated hyper-parameters. Often, the most ap-
propriate mean and covariance functions are connected to
prior knowledge of the underlying problem. For example,
Koyejo et al. (2013) use functional expectation constraints
to consider the problem of gene-disease association, and
Navarro et al. (2016) employs a multivariate generalised
von Mises distribution to produce a GP-like regression that
handles circular variable problems.

At the same time, it is not always obvious how one might
construct a GP model that obeys underlying principles,

*Equal contribution . Correspondence to: Anonymous Author
<anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.
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Figure 1. Predicted strength of a magnetic field at three heights,
given measured data sampled from the trajectory shown (blue
curve). The three components (x1, x2, x3) denote the Cartesian
coordinates, where the x3-coordinate is the height above the floor.
The magnetic field is curl-free, which can be formulated in terms
of three linear constraints. The method proposed in this paper
can exploit these constraints to improve the predictions. See Sec-
tion 5.2 for details.

such as equilibrium conditions and conservation ”laws”.
One straightforward approach to this problem is to add fic-
titious measurements that observe the constraints at a finite
number of points of interest. This has the benefit of being
relatively straightforward to implement, but has the some-
times significant drawback of increasing the problem di-
mension and at the same time not enforcing the constraints
between the points of interest.

A different approach to constraining the GP model is to
construct mean and covariance functions that obey the con-
straints. For example, curl and divergence free covariance
functions are used in (Macêdo & Castro, 2008) to improve
the accuracy for regression problems. The main benefit of
this approach is that the problem dimension does not grow,
and the constraints are enforced everywhere, not just at the

Carl Jidling, Niklas Wahlström, Adrian Wills and Thomas B. Schön. Linearly constrained Gaussian processes.
Pre-print arXiv:1703:00787, March, 2017.
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Online learning for distribution-free prediction

Problem formulation: Predict y given x using observed data
generated by some unknown distribution (x, y) ∼ p0(x, y).

Goals: Learn a predictor function ŷ(x)

1. in an online manner as n = 1, 2, . . .

2. with performance guarantees

3. and with calibrated uncertainty
quantification.

Online Learning for
Distribution-Free Prediction

Dave Zachariah, Petre Stoica and Thomas B. Schön
Department of Information Technology

Problem
Data generated by unknown distribution

(x, y) ∼ p0(x, y).
Given x, predict y using observed data

Dn = {(x1, y1), . . . , (xn, yn)}
Prediction risk

R , E

|y − ŷ(x)|2




Goals
Learn a predictor function ŷ(x) from Dn
1. in online manner as n = 1, 2, . . .
2.with performance guarantees
3.with calibrated uncertainty quantification

Type: Linear regression
Predictor form

ŷ(x) = φ>(x)w
where optimal distribution-free predictor given by

w? , arg min
w : ‖w‖0≤k

R̂(w).

Resulting predictor ŷ?(x) is intractible.

Type: Linear combiner
Predictor form

ŷ(x) = λ>(x)y
where optimal model-based predictor is given by

λ(x) = arg min
λ : unbiased

R(λ|x).
If y is zero-mean stationary process, we have

Cov[y, y ′|x,x′] = Σ∞k=1θkφk(x)φk(x′) + θ0δ(x,x′).
Resulting ŷ(x;θ) is a function of hyperparameters θ.

Learning the hyperparameters

Truncate sum to q hyperparameters, let Σ , Cov[y|X] and ˜Z
denote a normalized covariance matrix. Fit the covariance
structure:

θ? = arg min
θ

‖ ˜Z−Σ ‖2
Σ−1,

which is a convex problem.

Computation
Resulting predictor ŷ(x;θ?) is updated online as n = 1, 2, . . . .
Total runtime O(nq2) and constant memory requirement
O(q2).

Performance guarantees
Divergence from optimal distribution-free predictor,

∆ = ̂E

|ŷ(x;θ?)− ŷ?(x)|2


 ,

is bounded by properties of the optimal predictor:

∆ ≤ 2
n‖ϕ�w?‖2

1 + 4

√√√√√√√√√√√√√√√

R̂(w?)
n ‖ϕ�w?‖1,

where ϕ is a function of all observed regressors.

Calibrated uncertainty quantification

yŷ(x)

C(x)

1. Split data Dn into two random partitions D′n and D′′n
2. Learn ŷ(x;θ?) from D′n
3.Predict outputs in D′′n and use residuals to form conformal
interval C (x)

Ensures interval with valid 100κ%-coverage
Pr{y ∈ C (x)} ≥ κ

Numerical experiments

Ozone density y in [DU] and spatial coordinates x in [km]

̂y(x;θ?) as a function of x
I Dn where n = 17 340, span y ∈ [179.40, 542.00]
I Predict n̄ = 164 735 samples with ŷ(x;θ?), yields RMSE of

6.74 DU
I 90%-confidence interval C (x) had length 19.44 DU and

empirical coverage of 90%.

dave.zachariah@it.uu.se http://www.it.uu.se/katalog/davza513

Dave Zachariah, Petre Stoica and Thomas B. Schön. Online learning for distribution-free prediction. Pre-print
arXiv:1703.05060, March, 2017.
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GP prediction performance after learning

Problem formulation: Quantify the uncertainty of the prediction
f(x?) at a test point x? when f(x) is a GP model that has been
learnt from data {xi, yi}Ni=1, where y = f(x) + ε.

Derive a fundamental lower bound of the MSE when the
hyper-parameters used in the GP for f are learnt from data.

Available in closed-form and simple and cheap to compute.

Prediction performance after learning
in Gaussian process regression

Johan Wågberg, Dave Zachariah, Thomas B. Schön and Petre Stoica
Department of Information Technology, Uppsala University

Problem formulation

Consider the problem of learning a function f (x) from data
DN = {xi, yi}N

i=1 where
y = f (x) + ε ∈ R.

The aim is to predict f⋆ , f (x⋆) at a test point x⋆ and to
quantify the uncertainty.

Model

It is common to model f (x) as a Gaussian process (GP)
f (x) ∼ GP (mα(x), kβ(x, x′)) and θ =

[
αT βT σ2]T

is a vector of hyperparameters. The noise ε is uncorrelated
and zero-mean with variance σ2.
For a test point x⋆, we consider the mean squared error (MSE)
of an estimator f̂⋆ of f⋆:

MSE
(

f̂⋆
)
, E

[
|f⋆ − f̂⋆|2

]
.

When θ is known, the optimal predictor f̌⋆ is given by
f̌⋆ = mα(x⋆) + kT

⋆

(
K + σ2I

)−1
(y − m), (1)

where m =
[
mα(x1) · · · mα(xN)

]T,
k⋆ =

[
kβ(x⋆, x1) · · · kβ(x⋆, xN)

]T and K = {kβ(xi, xj)}i,j.

The predictor f̌⋆ equals the mean of the distribution p(f⋆|y,θ).
The minimum MSE then follows directly from the predictive
variance, denoted σ2

⋆|y.

Learning hyperparameters

The hyperparameters θ are unknown and must typically be
learned from the data. For unbiased learning methods, the
accuracy of estimating a deterministic parameter is limited by
the Cramér-Rao bound:

MSE
(
θ̂
)
≥ J−1

θ . (2)
where

Jθ = −Ey |θ

[
∂

∂θ
log p(y |θ) ∂

∂θT log p(y |θ)
]

is the Fisher information matrix.

Bayesian Cramér-Rao bound
The Bayesian Cramér-Rao bound expresses a limit on the accuracy
of estimating a random variable. For the GP with known
hyperparamters θ, it is

MSE
(

f̂⋆
)
≥ J−1

⋆ = k⋆⋆ − kT
⋆

(
K + σ2I

)−1 k⋆ ≡ σ2
⋆|y, (3)

where k⋆⋆ = kβ(x⋆, x⋆) and

J⋆ = Ef⋆,y |θ

[(
∂

∂f⋆
log p(y, f⋆ |θ)

)2
]

is the Bayes information matrix.
The bound (3) is attained by the optimal predictor (1). However,
when θ is unknown and must be learned from data, the bound (3)
will not reflect the additional errors arising from the learning process.
Thus, the bound will systematically underestimate the prediction
errors.

Consider a GP with mean mα(x) = αx, and covariance
kβ(x, x′) = β2

0 exp
(
− 1

2β2
1
∥x − x′∥2

)
sampled at N = 10

different points. The unknown hyperparameters are learned
from the data by maximum likelihood.
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Figure 1: Predictions of f (x) using hyperparameters that have been
learned from data. The credibility region corresponds to f̂ (x)± 3σ⋆|y.

Hybrid Cramér-Rao bound
The hybrid Cramér-Rao bound (HCRB) limits the accuracy of
estimating a hybrid parameter containing both deterministic and
random entries. For the GP, when θ is learned from the data, we
obtain

MSE
(
f̂?
)
≥
(
J? − JT

θ,? J
−1
θ Jθ,?

)−1
= σ2?|y + gTM−1g , (4)

where
[

J⋆ JT
θ,⋆

Jθ,⋆ Jθ

]
= Ef⋆,y |θ



[
∂ log p(y,f⋆ |θ)

∂f⋆
∂ log p(y,f⋆ |θ)

∂θ

][
∂ log p(y,f⋆ |θ)

∂f⋆
∂ log p(y,f⋆ |θ)

∂θ

]T

 (5)

is the hybrid information matrix. The computation of

g =
∂

∂α
(m⋆ − w⊤m) and M =

∂mT

∂α
(K + σ2I)−1 ∂m

∂αT. (6)
is inexpensive.
Comparing (3) and (4), the nonnegative term gTM−1g ≥ 0 is the
additional error incurred due to the lack of information about θ.
Note that gTM−1g will be non-zero even in the simplest of models
for which the data has an unknown constant mean, i.e. mα(x) ≡ α.

Note also that, surprisingly, for the special case in which α
is known, (4) coincides with (3), eventhough β and σ2 are
unknown.
Figure 2 shows the same realization of f (x) as in Figure 1
along with the predicted values f̂ (x). The error regions are
now obtained from (4) which takes into account that θ has
been learned from data. These regions clearly quantify the
errors more accurately.
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Figure 2: Predictions of f (x) using hyperparameters that have been
learned from data. The dark shaded region corresponds to
f̂ (x)± 3

√
HCRB.

Marginalizing hyperparameters

For mean functions linear in the parameters mα(x) = αTu(x), we can assign a Gaussian hyperprior α ∼ N (0,Σ). Marginalizing α from f (x) gives an additional additive term
kΣ(x, x′) = uT(x)Σu(x) to the covariance function and the mean function becomes m(x) ≡ 0.

Consider a linear trend mα(x) = α1 + α2x along with kβ(x, x′) = β2
0 exp

(
− 1

2β2
1
∥x − x′∥2

)
. The marginalized model uses the additional covariance term kβaff(x, x′) = βaff

1 + βaff
2 xx′. For the special

case in which only βaff is learned, the correspondence between σ2
⋆|y and HCRB in Figure 3 is striking.
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Figure 3: A comparison between bounds and MSE for an original and marginalized data model. Left: The corresponding HCRB and predictive variance. Right: MSE of corresponding predictors.

Real data example

Consider real CO2 concentration data in Figure 4. The data exhibits a clear trend as well as periodicities. To capture this, an affine mean function together with a covariance function with a
periodic part was used. As can be seen, several data points fall outside of the 99.7% credibility region of the standard approach.
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Figure 4: Monthly average atmospheric CO2 concentration measured at Mauna Loa. GP model fit on data until December 2003. Error regions based on f̂ (x)± 3σ⋆|y and f̂ (x)± 3
√

HCRB.
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Conclusions

Constructed a Gaussian process state space model.

Prior = regularization, helping the model to generalize
without sacrificing the flexibility offered by the basis

function expansion.

A flexible model often gives the best performance.

The resulting learning problem require approximations.

SMC highly useful in computing these approximations.

Hosting the SMC workshop in Uppsala, Aug. 30-Sep. 1, 2017.

www.it.uu.se/conferences/smc2017
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